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Background



Big Data Era

• A rapid adoption of Artificial Intelligence (AI), High-Performance Com-
-puting (HPC), Data Analytics, and Cloud Service in these days.

• They handle “Big Data”.



What does Data look like?

• These Big Data applications do not merely handle Blocks; 
they manage variable-sized Key-Value Pairs or Objects.

Variable-sizedFixed-sized

* Picture from “Key Value SSD Explained – Concept, Device, System, and Standard” presented at SDC 2017 by S.-K.Yang,



Key-Value Store

• Therefore, these Big Data applications typically operate by 
employing Key-Value Stores (e.g., RocksDB, Cassandra).

* Picture from “Key Value SSD Explained – Concept, Device, System, and Standard” presented at SDC 2017 by S.-K.Yang,



Software Stack Issue

• Key-Value Stores run on top of file system & block layer, device 
driver and device controller.
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Software Stack Issue

• The problem is that these layers account for a significant portion 
of the total response time in Key-Value Stores [1].

[1] Lee, C. G., Kang, H., Park, D., Park, S., Kim, Y., Noh, J., Chung, W., & Park, K. (2019). iLSM-SSD: An Intelligent LSM-Tree Based Key-Value SSD for Data Analytics. In Proceedings of the

International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS). 



Key-Value Solid State Drive (KV-SSD)

• What about streamlining these layers from the storage stack?
• By making a key-value pair as the unit of data communication interface

• KV-SSDs have renovated the storage interface by changing the unit of I/O 
transactions from the traditional block to key-value.

key-value

block
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• By making a key-value pair as the unit of data communication interface

• KV-SSDs have renovated the storage interface by changing the unit of I/O 
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➔ lower latency & higher throughput
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Key-Value Solid State Drive (KV-SSD)

• KV-SSD supports key-value store operations like PUT and GET.

• KV-SSD maintains Key-to-Page mapping info by deploying index 
structures like Hash Table or LSM-tree.

* Picture from “Key Value SSD Explained – Concept, Device, System, and Standard” presented at SDC 2017 by S.-K.Yang,



NVMe Key-Value Command Set

• The NVMe protocol has introduced a key-value command set.

* Picture from “Key Value SSD Explained – Concept, Device, System, and Standard” presented at SDC 2017 by S.-K.Yang,



NVMe Key-Value Command Set

• The NVMe protocol has introduced a key-value command set.

• Most of commercially and academically released KV-SSDs have 
utilized the NVMe key-value command set to offer key-value interface.

SK hynix KV-CSD [2] Academia

[2] Park, I., Zheng, Q., Manno, D., Yang, S., Lee, J., Bonnie, D., Settlemyer, B., Kim, Y., Chung, W., & Grider, G. (2023). KV-CSD: A Hardware-Accelerated Key-Value Store for Data-Intensive 

Applications. In Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER), 132–144.



NVMe Key-Value Write Mechanism

• In a case of NVMe KV-SSD based on the LSM-tree with a key-value 
separation (e.g., iLSM-SSD, KV-CSD), when writing key-value pairs, ...



NVMe Key-Value Write Mechanism

• The NVMe driver stores a key and metadata in the NVMe command, 
and then submits the command to the SQ and rings the doorbell.



NVMe Key-Value Write Mechanism

• The NVMe controller issues a DMA transaction to copy the payload 
(value) to the NAND page buffer within the device’s DRAM.



NVMe Key-Value Write Mechanism

• The controller constructs the LSM-tree entry containing the key, value 
size, and value pointer, and programs the NAND page buffer entry.

(to show the flow clearly, it programs the NAND 
page buffer entry even though it’s not full)



Motivation



Problem Definition

• According to Meta, their popular LSM KVS, RocksDB, in a production 
environment experiences the size of values nearly not reaching a 
hundred bytes on average [3], which is far less than the 4 KiB 
memory page size.

[3] Cao, Z., Dong, S., Vemuri, S., & Du, D. H. C. (2020). Characterizing, modeling, and benchmarking RocksDB key-value workloads at Facebook. In Proceedings of the 18th USENIX Conference 
on File and Storage Technologies (FAST ’20) (pp. 1-14). Santa Clara, CA, USA.

Figure – Value Size CDF for RocksDB as a MySQL storage layer (left) and RocksDB as a distributed KVS 
(right)



Problem Definition

• The problem occurs with the fact that the NVMe key-value interface 
still cannot extricate itself from the deeply entrenched block-interface-
assumed storage mechanisms and frameworks.

➔ is it really a `key-value` interface?

key-value



Problem #1. PCIe Traffic Amplification

• The NVMe’s payload transfer method, PRP, restricts DMA transfers to 
occur in units of 4 KiB, a size of memory page.

• This leads to the bloated PCIe traffic during value transfers, especially for 
variable-sized, small values.



Problem #1. PCIe Traffic Amplification

• The NVMe’s payload transfer method, PRP, restricts DMA transfers to 
occur in units of 4 KiB, a size of memory page.

• This leads to the bloated PCIe traffic during value transfers, especially for 
variable-sized, small values.

Setup IterKVSSD (Systor ’23) on Cosmos+ OpenSSD platform
- feature: SOTA LSM-based KV-SSD        - PCIe Gen2 x8 lane
- 1GB of DRAM, 1TB of NAND (Toshiba), Xilinx zynq-7000

Workload fillsequential of RocksDB’s db_bench
- number of PUTs: 1 million unique KV pairs       - key size: 4 B※ Traffic Amplification = (value size) / (PCIe traffic)



Problem #1. PCIe Traffic Amplification

• NVMe’s another payload transfer mechanism, Scatter-Gather List 
(SGL), can support multiple variable-sized DMAs across scattered 
memory segments. 



Problem #1. PCIe Traffic Amplification

• However, it has been reported that the cost of enabling the SGL 
outweighs the benefit for I/O smaller than 32 KiB [4]. 

• The Linux kernel thus establishes a minimum threshold for data transferred via SGL at 32 KiB 
[5], indicating that using SGL for small value transfers is not advisable.

[4] 2017. nvme : add Scatter-Gather List (SGL) support in NVMe driver. https://lore.kernel.org/all/04aaed5c-1a8a-f601-6c9c-88bf1cf66e8a@mellanox.com/T/
[5] The Linux Kernel source code. sgl_threshold. https://github.com/torvalds/linux/blob/master/drivers/nvme/host/pci.c



Problem #1. PCIe Traffic Amplification

• KV-CSD and Dotori [6] have tackled this issue by implementing bulk 
PUT operation, which is host-side batching.

• However, a fundamental issue with buffering the key-value entries on the host 
side is the risk of data loss on power failure.

[6] Duffy, C., Shim, J., Kim, S.-H., & Kim, J.-S. (2023). Dotori: A Key-Value SSD Based KV Store. Proceedings of the VLDB Endowment, 16(6), 1560–1572. 

not suitable for 
mission-critical
scenarios



Problem #2. NAND Write I/O Amplification

• The packing (buffering into NAND page buffer entry) of received 
payloads (values) within NVMe SSDs also occurs in units of 4 KiB. 

• This in-device page-unit packing clearly clashes with KV-SSDs, leading to 
severe NAND write amplification. 



Problem #2. NAND Write I/O Amplification

• The packing (buffering into NAND page buffer entry) of received 
payloads (values) within NVMe SSDs also occurs in units of 4 KiB. 

• This in-device page-unit packing clearly clashes with KV-SSDs, leading to 
severe NAND write amplification. 

※Write Amplification = (value size) / (written bytes)



Problem #2. NAND Write I/O Amplification

• KAML [7] proposed the batching for multiple values and stored them 
at the NAND page level in a log-fashion. 

• However, the design for efficiently packing sub-page values was not detailed enough when 
considering some limitations of real-world storage devices.

[7] Y. Jin, H.-W. Tseng, Y. Papakonstantinou, and S. Swanson, KAML: A Flexible, High-Performance Key-Value SSD, in Proceedings of the 2017 IEEE International Symposium on High 
Performance Computer Architecture (HPCA), Feb. 2017.

Key | Value

Key | Value

Key | Value
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implicit page-unit

restrictions on DMA 

Problem #2. NAND Write I/O Amplification

• Limitation. some DMA engines in real-world SSDs, including our testbed, require 
that the transfer size and destination addresses be page-aligned [8].

• This is because the assumption that the payload is multiple blocks guided the 
storage stack to be optimized for block-size transfer from memory allocations for 
DMA in the both-side to the DMA engine within the device.

• Ex) IOMMU (Input/Output Memory Management Unit)

[8] W. Kwon, S.-W. Sok, C.-H. Park, M.-H. Oh, and S. Hong. 2022. Gen-Z memory pool system implementation and performance measurement. ETRI Journal 44 (2022), 450–461. Issue 3
[9] The Linux Kernel documentation. 2020. Dynamic DMA mapping Guide. https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt



Problem #2. NAND Write I/O Amplification

• Limitation. some DMA engines in real-world SSDs, including our testbed, require 
that the transfer size and destination addresses be page-aligned [8]

• The device drivers are typically designed to accommodate this requirement [9]. 

[8] W. Kwon, S.-W. Sok, C.-H. Park, M.-H. Oh, and S. Hong. 2022. Gen-Z memory pool system implementation and performance measurement. ETRI Journal 44 (2022), 450–461. Issue 3
[9] The Linux Kernel documentation. 2020. Dynamic DMA mapping Guide. https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt

➔ memory copies

➔ not supported ➔ memory copies



Problem #2. NAND Write I/O Amplification

• Limitation. some DMA engines in real-world SSDs, including our testbed, require 
that the transfer size and destination addresses be page-aligned [8].

• Therefore, fine-grained value packing (logging) within the NAND page buffer 
necessitates memory copies extensively using device’s compute resources.

➔ not supported ➔ memory copies

[8] W. Kwon, S.-W. Sok, C.-H. Park, M.-H. Oh, and S. Hong. 2022. Gen-Z memory pool system implementation and performance measurement. ETRI Journal 44 (2022), 450–461. Issue 3
[9] The Linux Kernel documentation. 2020. Dynamic DMA mapping Guide. https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt



Proposed Solution: BandSlim



Proposed Solution: BandSlim

• To tackle both amplifications occurring in small key-value transfer and 
storing NAND flash pages, we introduce BandSlim.

BandSlim

Fine-Grained
Value Transfer

Fine-Grained
Value Packing



(1) Fine-Grained Value Transfer

• BandSlim employs a fine-grained inline value transfer mechanism 
that piggybacks values smaller than a memory page size to NVMe
commands using the reserved fields (gray-colored in Figure (a)&(b)).
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(1) Fine-Grained Value Transfer

• BandSlim employs a fine-grained inline value transfer mechanism 
that piggybacks values smaller than a memory page size to NVMe
commands using the reserved fields (gray-colored in Figure (a)&(b)).

Figure – Value Size CDF for RocksDB in a 
production environment

64 B NVMe command 
gives an opportunity



(1) Adaptive Value Transfer Optimization

• When transmitting large values, generating and sending multiple 
NVMe commands in this manner can result in longer response times.

• Thus, BandSlim also incorporates an adaptive value transfer strategy that 
switches back and forth piggybacking and page-unit DMA.
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(1) Adaptive Value Transfer Optimization

• When transmitting large values, generating and sending multiple 
NVMe commands in this manner can result in longer response times.

• Thus, BandSlim also incorporates an adaptive value transfer strategy that 
switches back and forth piggybacking and page-unit DMA.

Small 
Value Large Value



(2) Fine-Grained Value Packing

• BandSlim implements a Selective Packing with Backfilling Policy
locating small values to fill the gap formed by the page-aligned, DMA-
transferred value under the adaptive value transfer method.

(a) All Packing  from KAML (b) Selective Packing w/ Backfilling



(2) Fine-Grained Value Packing

• BandSlim implements a Selective Packing with Backfilling Policy
locating small values to fill the gap formed by the page-aligned, DMA-
transferred value under the adaptive value transfer method.

(a) All Packing  from KAML (b) Selective Packing w/ Backfilling

➔ NO memory copies for large values➔memory copies for large values



Evaluation



Evaluation Setup

• Testbed: KV-SSD on

Cosmos+

OpenSSD

Platform



Evaluation Setup

• Test Configurations:

Baseline State-of-the-art LSM-based NVMe KV-SSD, IterKVSSD (Systor ’23).

Piggyback It transfers values using only piggybacking-based transfer method.

Adaptive It transfers values using the adaptive value transfer method.



Evaluation Setup

• Workloads (Meta’s db_bench):

Baseline State-of-the-art LSM-based NVMe KV-SSD, IterKVSSD (Systor ’23).

Piggyback It transfers values using only piggybacking-based transfer method.

Adaptive It transfers values using the adaptive value transfer method.

W(A) fillseq, 1 million PUTs. The value size does not change.

W(B) fillrandom, 1 million PUTs, value sizes of 8 B or 2 KiB at a 9:1 ratio.

W(C) Same as W(B) but with the value size ratio reversed to 1:9.

W(D)
fillrandom, 1 million PUTs, values sizes of 8 B, 16 B, 32 B, 64 B, 128 B, 
256 B, 512 B, 1 KiB, and 2 KiB with each size having an equal ratio. 

W(M)
mixgraph (real-world workloads with a maximum value size of 1 KiB 
and almost 70% of values being under 35 B), 1 million PUTs.



Evaluation Setup

• Workloads (Meta’s db_bench):

Baseline State-of-the-art LSM-based NVMe KV-SSD, IterKVSSD (Systor ’23).

Piggyback It transfers values using only piggybacking-based transfer method.

Adaptive It transfers values using the adaptive value transfer method.

W(A) ➔ Fixed Value Size 

W(B) ➔ Small Value Dominant

W(C) ➔ Large Value Dominant

W(D) ➔ Balanced Value Size

W(M) ➔ Real-World Pattern



(1) Fine-Grained Value Transfer

• Piggyback achieves a remarkable reduction in PCIe traffic of up to 97.9%.

• As the value size increases with piggybacking applied, the PCIe traffic and the 
response time begins to increase due to the addition of trailing commands. 

Figure 1. Total PCIe Traffic and Avg. Response Time.

Sequential Write Workload (W(A)) 
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(1) Fine-Grained Value Transfer

• Even though Piggyback can increase response times greatly, Piggyback still 
improved the average throughput by about 22% compared to Baseline for W(M).

• Above all, Adaptive proves to be the best in all workloads. 

Figure 2. Performance analysis of  transfer methods.

(a) Avg. Throughput                              (b) Total PCIe Traffic

Various Workloads (W(B) ~ W(M)) 
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Various Workloads (W(B) ~ W(M)) 

The proposed approach performs better than the baseline under 
real-world workloads while reducing PCIe traffic significantly.
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(1) Fine-Grained Value Transfer

• Even though Piggyback can increase response times greatly, Piggyback still 
improved the average throughput by about 22% compared to Baseline for W(M).

• Above all, Adaptive proves to be the best in all workloads. 

Figure 2. Performance analysis of  transfer methods.

(a) Avg. Throughput                              (b) Total PCIe Traffic

Various Workloads (W(B) ~ W(M)) 

If we cover most of values by piggybacking, and large values by 
fast DMA, we can achieve an optimal transfer performance.



Evaluation Setup

• Test Configurations:

Block The baseline block-based page-unit payload packing of NVMe SSDs.

All The All Packing Policy from KAML

Select The Selective Packing Policy proposed in BandSlim

Backfill The Selective Packing with Backfilling Policy proposed in BandSlim



(2) Fine-Grained Value Packing

• With packing applied, the total number of NAND writes reduces greatly. 

• Backfill reduces NAND writes as much as All in small-value-dominant workloads 
(W(B) & W(M)). 

Various Workloads (W(B) ~ W(M)) 

(a) Total NAND I/O Cnt.                               (b) Avg. Memcpy Time

Figure 3. Performance analysis of  in-device packing policies. 
The host uses the adaptive value transfer method.
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• Selective performs as poorly as Block in large-value-dominant situations (W(C)). 
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(2) Fine-Grained Value Packing

• However, in scenarios where small values predominate, such as in W(B) or W(M), 
the throughput of the Selective dips by at most 4.5% compared to the All.

• Backfill showcases the most optimal performance across both W(B) and W(M).

Various Workloads (W(B) ~ W(M)) 

(c) Avg. Resp. Time                                     (d) Avg. Throughput

Figure 3. Performance analysis of  in-device packing policies. 
The host uses the adaptive value transfer method.



(2) Fine-Grained Value Packing

• However, in scenarios where small values predominate, such as in W(B) or W(M), 
the throughput of the Selective dips by at most 4.5% compared to the All.

• Backfill showcases the most optimal performance across both W(B) and W(M).

Various Workloads (W(B) ~ W(M)) 

(c) Avg. Resp. Time                                     (d) Avg. Throughput

Figure 3. Performance analysis of  in-device packing policies. 
The host uses the adaptive value transfer method.

Each packing policy has its own strengths and weaknesses, but the 
proposed approach performs better under real-world workloads.



Conclusion



Conclusion

We introduce BandSlim to address the incompatibilities between 
traditional block-interfaced storage protocols (e.g., NVMe) and the new 
key-value interface of KV-SSDs. 

The mismatch leads to excessive traffic on the PCIe interconnect and 
amplified NAND write I/Os, significantly degrading performance. 

BandSlim effectively resolves these issues by enabling a Fine-Grained 
Value Transfer and Efficient, Fine-Grained In-Device Value Packing.



Thank You
Q&A

Presenter: Youngjae Kim

Contact: youkim@sogang.ac.kr

mailto:junttang@sogang.ac.kr
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