DISCOS

sssssssssssssssss

BandSlim: A Novel Bandwidth and Space-Efficient
KV-SSD with an Escape-from-Block Approach

Youngjae Kim (PhD)
ICPP 2024

Speical Thanks to Junhyeok Park, Chang-Gyu Lee, Soon Hwang

NVRAMOS 2014 at Jeju Silla Hotel
(November 2014)

From Petascale to Exascale

Mission: Providing world-class computational Vision: Deliver transforming discoveries in

resources and specialized services for the most energy technologies, materials, biology,
computationally intensive global challenges environment, health, etc.

1018

Steady progress per generation
10"

1016

E“ : F N IER
e - Frontier
i 2,000 PF
Summit Hybrid CPU/GPU
Titan: 200: PF 20 MW

Jaguar 27 PF Hybrid CPU/GPU
i Hybrid CPU/GPU 13 MW
Multi-core CPU 9 MW
2009 7MW 2012 2017 2021

%OAK RIDGE

National Laboratory

From Petascale to Exascale

Mission: Providing world-class computational Vision: Deliver transforming discoveries in

resources and specialized services for the most energy technologies, materials, biology,
computationally intensive global challenges environment, health, etc.

1018

Steady progress per generation
10"

1016 .
ml: j ity l:_:n:u
= - Frontier
2,000 PF
pommit Hyborid CPU/GPU
Titan: 200 PF 29 MW
Jaguar 27 BF Hybrid CPU/GPU
53 PF Hybrid CPU/GPU 13 MW
Multi-core CPU 9 MW
7 MW

2009 2021

%OAK RIDGE

National Laboratory

0>°

From Petascale to Exascale

Mission: Providing world-class computational Vision: Deliver transforming discoveries in

resources and specialized services for the most energy technologies, materials, biology,
computationally intensive global challenges environment, health, etc.

1018
Steady progress per generation

1017

Ell‘ 3 F N :.;l\
" - Froriies:
. » = RocksDB
Summit HyMri
Hybrid CPU/GPU

1016

Titan:
27 PF
Hybrid CPU/GPU

2.3 PF 13 IV

Multi-core CPU

2009 P

&(N)AK RIDGE

ional Laboratory

Background

£)°

Big Data Era @

A rapid adoption of Artificial Intelligence (Al), High-Performance Com-
-puting (HPC), Data Analytics, and Cloud Service in these days.

* They handle “Big Data”.

&)} ChatGPT

BB Microsoft
B Azure

DB: xx_036785.mfem_root
Cycle: 36785 Time:1.06549

£)°

What does Data look like?

* These Big Data applications do not merely handle Blocks,;
they manage variable-sized Key-Value Pairs or Objects.

Block Object

- | {4 —
- WL

Fixed-sized Variable-sized

* Picture from “Key Value SSD Explained — Concept, Device, System, and Standard” presented at SDC 2017 by S.-K.Yang,

)’

Key-Value Store

* Therefore, these Big Data applications typically operate by
employing Key-Value Stores (e.g., RocksDB, Cassandra).

mazon
\ qirbnb Daylumobﬂ

ORakuten

D /KeyVaIue § mongoDB
Linked[T]] @ Priateredt o / Lo MyRocks

% BVCache

* Picture from “Key Value SSD Explained — Concept, Device, System, and Standard” presented at SDC 2017 by S.-K.Yang,

Software Stack Issue

« Key-Value Stores run on top of file system & block layer, device

|

driver and device controller.
£ . @

e redis . mongo DB

[
®

ceph

Key-Value APT |

Host-side
Key-Value Store

File System

Block Layer

NVMe Block Driver

‘ NVMe Block Controller \

NVMe SSD

s

| A
Software Stack Issue N

« Key-Value Stores run on top of file system & block layer, device
driver and device controller.

£ g, &9 . | Key-ValueAPT |
@

Host-side
e redis . mongo DB

Key-Value Store

ceph

File System

Do we really need these layers?
Block Layer

NVMe Block Driver

‘ NVMe Block Controller \

NVMe SSD

s

Software Stack Issue
* These layers are In place to follow the block interface, which

originated from the hard disk drives.

[File System]
[Block Layer]
Computer hard drive -
/ \\\ \ nw*i*‘\., : B
{l sk A G 8
! i B 4
{ &
-
i
" J

| A
Software Stack Issue N

* These layers are In place to follow the block interface, which
originated from the hard disk drives.

[File System]
[Block Layer]
//E'@-%\\

| A
Software Stack Issue N

* The problem is that these layers account for a significant portion
of the total response time in Key-Value Stores [1].

@ User library — write syscall
@Emm fdatasync syscall Block level I/0

Average Latency (usec)
I
S

@ ﬁ

RocksDB NVMe SSD

[1] Lee, C. G., Kang, H., Park, D., Park, S., Kim, Y., Noh, J., Chung, W., & Park, K. (2019). iLSM-SSD: An Intelligent LSM-Tree Based Key-Value SSD for Data Analytics. In Proceedings of the
International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS).

Key-Value Solid State Drive (KV-SSD)

* What about streamlining these layers from the storage stack?
« By making a key-value pair as the unit of data communication interface

« KV-SSDs have renovated the storage interface by changing the unit of I/O
transactions from the traditional block to key-value.

Host NVMe SSD
|
KVS Key-Value Host-side File Block NVMe NVMe
API (GEAEIIERS G | System | | Layer Driver Controller
l
Host Key-Value SSD

Key-Val
KV'SSD [eyAP? ue]

NVMe In-device
Controller | FiGA LIRS)=

)’

Key-Value Solid State Drive (KV-SSD)

* What about streamlining these layers from the storage stack?
« By making a key-value pair as the unit of data communication interface

« KV-SSDs have renovated the storage interface by changing the unit of I/O
transactions from the traditional block to key-value.

Host NVMe SSD
|
KVS Key-Value Host-side File Block NVMe NVMe
API (GEAEIIERS G | System | | Layer Driver Controller
l
Host Key-Value SSD

Key-Val
KV'SSD [eyAP? ue]

NVMe In-device
Controller | G AEIFERS 6]

=>» lower latency & higher throughput

)’

Key-Value Solid State Drive (KV-SSD) g

« KV-SSD supports key-value store operations like PUT and GET.

« KV-SSD maintains Key-to-Page mapping info by deploying index
structures like Hash Table or LSM-tree.

Storage Server Key Value SSD
Lookup /

Check hash collision

> User/Device Hash Key —

Read/Write User Data

! $

Key Size Range ? Value Size Range ?

Physical Location / Offset

r e SRR tintadinteastiet. St —
K i val i
ey}uze a u£ Size < NAND >

Key Value I/F Command ' NAND Page (32KB)
| Get (key) / Put (Key, Value)) E e

Key Value SSD device driver
I FAAN

* Picture from “Key Value SSD Explained — Concept, Device, System, and Standard” presented at SDC 2017 by S.-K.Yang,

NVMe Key-Value Command Set g

* The NVMe protocol has introduced a key-value command set.

New Key Value [PUT J [GET] [DELETE] [EXISTS]
Commands

Existing Command Admin |dentify commands Other non-block
Extension command for KV specific commands

* Picture from “Key Value SSD Explained — Concept, Device, System, and Standard” presented at SDC 2017 by S.-K.Yang,

I
NVMe Key-Value Command Set @

* The NVMe protocol has introduced a key-value command set.

* Most of commercially and academically released KV-SSDs have
utilized the NVMe key-value command set to offer key-value interface.

SK hynix KV-CSD [2] Academia

HOST

Key-Value Request
L1

k4| Key Value Interface

s
Key-Value API
Key-Value
. KVSSD
Embedded RAM A8 USER
emtable |\ |\ ¥ _ _ _ _ _ __ ___ _ | _ __ _ _ ________._
LevelO () L1 | KemnEL
| Key-Value Device Driver |
Level 1 Key Range
Tree le
Interconnect NVMe Commands
Key-Value Extension)

s 6@@ @b

Host

-

K2P Mapping

| [DMIDOLD LD e
5,-’0“ * 4} J
¢ |LIDIDIIIDID)
5 |IDODIDID

NAND Flash [J Page [] Block

[2] Park, 1., Zheng, Q., Manno, D., Yang, S., Lee, J., Bonnie, D., Settlemyer, B., Kim, Y., Chung, W., & Grider, G. (2023). KV-CSD: A Hardware-Accelerated Key-Value Store for Data-Intensive
Applications. In Proceedings of the IEEE Intemational Conference on Cluster Computing (CLUSTER), 132—-144.

I
NVMe Key-Value Write Mechanism ?;‘,

* In a case of NVMe KV-SSD based on the LSM-tree with a key-value
separation (e.g., ILSM-SSD, KV-CSD), when writing key-value pairs, ...

PUT{(key,value)
2 alue|

NVMe Driver
Host DRAM e
PCle il

NVMe Controller NAND Page Buffer Entry
SO0 DRAM e
NAND Flash
/\ NAND Page
LSM-Tree —

r
16KB

I
NVMe Key-Value Write Mechanism @

 The NVMe driver stores a key and metadata in the NVMe command,
and then submits the command to the SQ and rings the doorbell.

PUT(key,value)
2 valve NVMe Command
NVMe Driver commandID

Host DRAM ——— 1 __ opcode | ...

> key o
PRPlist

PCle valueSize
NVMe Controller NAND Page Buffer Entry

SSD DRAM I

NAND Flash

/\ NAND Page
LSM-Tree — —

I
NVMe Key-Value Write Mechanism @

 The NVMe controller issues a DMA transaction to copy the payload
(value) to the NAND page buffer within the device’s DRAM.

PUT(key,value)

Mem Page
L23% value| NVMe Command 4KB
—
NVMe Driver commandID

Host DRAM —™—— 71—~ __ opcode | _ zuPd

> key -' . fTTTTTTTTmmmmmm T

PRPlist ~ pe=s? :

PCle valueSize

NVMe Controller J
SSD DRAM Il
NAND Flash

/\ NAND Page
LSM-Tree —

-
16KB

I
NVMe Key-Value Write Mechanism @

* The controller constructs the LSM-tree entry containing the key, value
size, and value pointer, and programs the NAND page buffer entry.

(to show the flow clearly, it programs the NAND
page buffer entry even though it’s not full)

PUT(key,value) Mem Page
= value NVMe Command 4KB
NVMe Driver commandID

Host DRAM —— 1 __ opcode

> key :

PRPlist ~ pauei :

PCle valueSize
______________________________ .. e

NVMe Controller
LSM-Tree Entry
key| valueSize | valueAddr d

LSM-Tree

Motivation

£)°

I
Problem Definition g

« According to Meta, their popular LSM KVS, RocksDB, in a production
environment experiences the size of values nearly not reaching a
hundred bytes on average [3], which is far less than the 4 KiB
memory page size.

1 1 -
0.8 “ﬂ . Object —— | 0.8
0.6 . Object 2ry —e— | 0.6

| Assoc —a— 7

0.4 Assoc 2ry —+— | 0.4
02 | Assoc_count | 0.2 : _

0 * Y ‘Non_SG — 0 | | Value size —

10° 100 102 10> 10* 10° 10° 10° 100 102 10° 10" 100 10°
Value size (bytes) Value size (bytes)
Figure — Value Size CDF for RocksDB as a MySQ(L.st}cl)r)age layer (left) and RocksDB as a distributed KVS
right

[3] Cao, Z., Dong, S., Vemuri, S., &Du, D. H. C. (2020). Characterizing, modeling, and benchmarking RocksDB key-value workloads at Facebook. In Proceedings of the 18th USENIX Conference
on File and Storage Technologies (FAST "20) (pp. 1-14). Santa Clara, CA, USA.

I
Problem Definition g

* The problem occurs with the fact that the NVMe key-value interface
still cannot extricate itself from the deeply entrenched block-interface-
assumed storage mechanisms and frameworks.

Host Key-Value SSD

Key-Value| | NVMe NVMe In-device
KV-SSD [API] Driver Controller | BiG AL NERS)=

=» is it really a key-value interface?

Problem #1. PCle Traffic Amplification @

 The NVMe's payload transfer method, PRP, restricts DMA transfers to
occur in units of 4 KiB, a size of memory page.

» This leads to the bloated PCle traffic during value transfers, especially for
variable-sized, small values.

Host DRAM

I
Problem #1. PCle Traffic Amplification @

 The NVMe's payload transfer method, PRP, restricts DMA transfers to
occur in units of 4 KiB, a size of memory page.

 This leads to the bloated PCle traffic during value transfers, especially for
variable-sized, small values.

Host DRAM

16 B

14- Traffic o be
) < R o2
912_ esponse _20%
© 101 =
e 15 ¢
£ -
H 6 10 5§
[«b} (]
o 4 P
o 2 -5 E

0 | | | | | T T T T T I I T T I T O

1234567 8 910111213141516 32 64 128 256 512 1K

Value Size (KB) Value Size (Bytes) Setup IterKVSSD (Systor “23) on Cosmos+ OpenSSD platform
. . . - feature: SOTA LSM-based KV-SSD - PCle Gen2 x8 lane
(a) Total PCle Traffic & Avg. Resp. Time (b) Traffic Amplification - 1GB of DRAM, 1TB of NAND (Toshiba), Xilinx zyng-7000

. _ o _ _ Workload fillsequential of RocksDB’s db_bench
X Traffic Amplification = (value size) / (PCle traffic) - number of PUTs: 1 million unique KV pairs - key size: 4 B

I
Problem #1. PCle Traffic Amplification g

* NVMe’s another payload transfer mechanism, Scatter-Gather List
(SGL), can support multiple variable-sized DMAs across scattered
memory segments.

SGL List SGL Descriptor
Bt

7] = 4 3 2 1

First SGL Segment i

inSQ Entry SGL Descriptor |

SGL Descmptor
SGL Descrptor
SGL Descrplor SGL Data Block Descriplors

Ml LLLLLLLLL L]

Descriptor
SGL Segment <
— SGL Descriptor ype Specific
SGL Descriptor
SGL Descmpior = SGL Last Segment Descrptor
SGL Descriptor | ,
Last | SGL Descriptor 15 | SGLDesc Type | Desc Type

7~ &GL Data Block Descriptors

SGL Segment N SGL Descriptor
SGL Descrptor]

Problem #1. PCle Traffic Amplification @

* However, it has been reported that the cost of enabling the SGL
outweighs the benefit for I/O smaller than 32 KiB [4].

« The Linux kernel thus establishes a minimum threshold for data transferred via SGL at 32 KiB
[5], indicating that using SGL for small value transfers is not advisable.

sgl_threshold = SZ_32K;

60 static unsigned int

61 module_param(sgl_thFesnold, t , O0a4),

62 MODULE_PARM_DESC(sgl_threshold,

63 "Use SGLs when average request segment size 1s larger or equal to "
64 "this size. Use @ to disable SGLs.");

66 #define NVME_PCI_MIN_QUEUE SIZE 2
67 #define NVME PCI_MAX_QUEUE SIZE 4095
68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);

69 static const struct kernel param ops 10 queue depth ops = {

70 .set = io_queue_depth_set,
71 .get = param_get uint,
72 };

[4] 2017. nvme : add Scatter-Gather List (SGL) support in NVMe driver. https://lore.kernel.org/all/0O4aaed5c-1a8a-f601-6¢9c-88bflcf66e 8a@mellanox.com/T/
[5] The Linux Kermel source code. sgl_threshold. https://github.com/torvalds/linux/blob/master/drivers/nvme/host/pci.c

I
Problem #1. PCle Traffic Amplification g

« KV-CSD and Dotori [6] have tackled this issue by implementing bulk
PUT operation, which is host-side batching.

« However, a fundamental issue with buffering the key-value entries on the host
side is the risk of data loss on power failure.

i Regular PUT R (- K __________ ‘U’I ______________________ i

_ . ey alue
Key | Value | ; :

N — A

(Bulk PUT \I"SE KLDG Sufter nOt SUItab|efOI’

]QFIush mission-critical

Key Value i scenarios
e O (RERRNT]

| Key | Value | ; I{LDG Zune Clusters ULDG Zune Clusters

— \ J

[6] Duffy, C., Shim, J., Kim, S.-H., & Kim, J.-S. (2023). Dotori: A Key-Value SSD Based KV Store. Proceedings of the VLDB Endowment, 16(6), 1560-1572.

Problem #2. NAND Write 1/0 Amplification @

* The packing (buffering into NAND page buffer entry) of received
payloads (values) within NVMe SSDs also occurs in units of 4 KiB.

 This in-device page-unit packing clearly clashes with KV-SSDs, leading to

severe NAND write amplification. B

Host DRAM

o -
A -
o o
.‘.' e
+ .

NAND Flash

Problem #2. NAND Write 1/0 Amplification @

* The packing (buffering into NAND page buffer entry) of received
payloads (values) within NVMe SSDs also occurs in units of 4 KiB.

 This in-device page-unit packing clearly clashes with KV-SSDs, leading to

severe NAND write amplification.

Host DRAM

=
o
1

a0 84 < g:sND v 5 5
0.) ponse 400% =
= o (4]
= 5 H
Q0.6 300 .
O) j=h
,_]
20.4- 2005' %
A ® =
Z0.2 1002 =
Z S

o
o

12345678 910111213141516 32 64 128 256 512 1K
Value Size (KB) Value Size (Bytes)

(a) Total NAND I/O & Avg. Resp. Time (b) Write Amplification

X Write Amplification = (value size) / (written bytes)

4KB

Problem #2. NAND Write 1/O Amplification

« KAML [7] proposed the batching for multiple values and stored them

at the NAND page level in a log-fashion.

« However, the design for efficiently packing sub-page values was not detailed enough when

considering some limitations of real-world storage devices.

Embedded
QO processors
3
b= = | = ECC/
(3]
= O | | Accele-
c jas c -
= ? N rators
(2] Y 3
! 1 | .
o> In-storage interconnect |
= Y F [
> Y Y /
% DMA Flash Storage
) engine interface DRAM
o]

A
Flash memory

PO | [

Log

eeeeee

Key | Value

eeeeee

Key | Value

P1

eeeee Key | Value ‘
eeeee Key | Value ‘

eeeee Key | Value ‘

000000000000000000000010010

000000000000000000000000010

s

[7] Y. Jdin, H.-W. Tseng, Y. Papakonstantinou, and S. Swanson, KAML: A Flexible, High-Performance Key-Value SSD, in Proceedings of the 2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA), Feb. 2017.

I
Problem #2. NAND Write 1/0 Amplification g

« Limitation. some DMA engines in real-world SSDs, including our testbed, require
that the transfer size and destination addresses be page-aligned [8].
* This is because the assumption that the payload is multiple blocks guided the

storage stack to be optimized for block-size transfer from memory allocations for
DMA in the both-side to the DMA engine within the device.

* Ex) IOMMU (Input/Output Memory Management Unit)

Main Memory

I Physical addresses
E_._.|.;j|~.r'||~..a|u p— MMU ..

: Device Taddresms . Virtual Fddr&ssesé

implicit page-unit
restrictions on DMA

Device | CPU

[8] W. Kwon, S.-W. Sok, C.-H. Park, M.-H. Oh, and S. Hong. 2022. Gen-Z memory pool system implementation and performance measurement. ETRI Journal 44 (2022), 450-461. Issue 3
[9] The Linux Kernel documentation. 2020. Dynamic DMA mapping Guide. https://www.kemel.org/doc/Documentation/DMA-API-HOWTO.txt

I
Problem #2. NAND Write 1/0 Amplification @

« Limitation. some DMA engines in real-world SSDs, including our testbed, require
that the transfer size and destination addresses be page-aligned [8]

« The device drivers are typically designed to accommodate this requirement [9].

[] i:
= not supported

[8] W. Kwon, S.-W. Sok, C.-H. Park, M.-H. Oh, and S. Hong. 2022. Gen-Z memory pool system implementation and performance measurement. ETRI Journal 44 (2022), 450-461. Issue 3
[9] The Linux Kernel documentation. 2020. Dynamic DMA mapping Guide. https://www.kemel.org/doc/Documentation/DMA-API-HOWTO.txt

I
Problem #2. NAND Write 1/0 Amplification g

« Limitation. some DMA engines in real-world SSDs, including our testbed, require
that the transfer size and destination addresses be page-aligned [8].

* Therefore, fine-grained value packing (logging) within the NAND page buffer
necessitates memory copies extensively using device’s compute resources.

= not supported =» memory copies

[8] W. Kwon, S.-W. Sok, C.-H. Park, M.-H. Oh, and S. Hong. 2022. Gen-Z memory pool system implementation and performance measurement. ETRI Journal 44 (2022), 450-461. Issue 3
[9] The Linux Kernel documentation. 2020. Dynamic DMA mapping Guide. https://www.kemel.org/doc/Documentation/DMA-API-HOWTO.txt

Proposed Solution: BandSlim

£)°

Proposed Solution: BandSlim @

 To tackle both amplifications occurring in small key-value transfer and
storing NAND flash pages, we introduce BandSlim.

Fine-Grained Fine-Grained
Value Transfer Value Packing

s

(1) Fine-Grained Value Transfer

« BandSlim employs a fine-grained inline value transfer mechanism
that piggybacks values smaller than a memory page size to NVMe
commands USing the reserved fields (gray-colored in Figure (a)&(b)).

dword | description

dword | description

dword0 commandID |P F | opcode dword0 commandID |P F| opcode
dword1 namespacelD dword1 namespacelD
dword2

key key

dword3

metadataPointer (PRP)

metadataPointer (PRP)

dword6)
Trvordy PRPlistEntry1

dword6 ;
dword? PRPlistEntry1

PRPlistEntry2

valueSize
reserved option keySize

reserved

PRPlistEntry2

valueSize
reserved oejijeli| keySize

dword13 reserved dword13

dword14 ke dword14
dword15 Y dword15

(a) Write Command (b) Transfer Command

key

(1) Fine-Grained Value Transfer

« BandSlim employs a fine-grained inline value transfer mechanism
that piggybacks values smaller than a memory page size to NVMe
commands USing the reserved fields (gray-colored in Figure (a)&(b)).

NVMe Command E' NVMe Command
w/o Piggybacking w/ Piggybacking

dword | description dword | description

dword0 commandID _|P F| opcode dword0 commandID _|P F | opcode

dword1l namespacelD dword1 namespacelD . Value MemOW Page
dword2 P dword2 K

dword3 d dword3 e

dword4

metadataPointer (PRP) metadataPointer (PRP)
dword6 dword6 Host Memory Host Memory
dword? PRPlistEntry1 dword? PRPIlistEntry1
. dword8 .

PRPlistEntry2 GwordS PRPlistEntry2
dword10 valueSize valueSize .
dword11 reserved oejijeli| keySize reserved option keySize h
dword12 d d ;o
dword13 (e dword13 MEanE /355
dword14 ke dword14 -
dword15 Y dword15 4

(a) Write Command (b) Transfer Command

Device Memory Device Memory

s

(1) Fine-Grained Value Transfer g

« BandSlim employs a fine-grained inline value transfer mechanism
that piggybacks values smaller than a memory page size to NVMe
commands USing the reserved fields (gray-colored in Figure (a)&(b)).

dword | description dword | description 1 -
dword0 commandID |P F | opcode dword0 commandID |P F| opcode
dword1 namespacelD dword1 namespacelD

dword?2
dword3

key 08 I

key

metadataPointer (PRP) metadataPointer (PRP) 06
dword6] dword6]
dword? PRPlistEntry1 dword? PRPIlistEntry1 0 4 i
PRPlistEntry2 PRPlistEntry2
valueSize valueSize 0 . 2 i]
reserved option B reserved option keySize Value SiZC
dwordis reserved dwordis reserved 0 il
dword14 dword14 0 1 4 5 6
dwerd 4 tey G4 ey 10° 10! 102 10° 100 10° 10
(a) Write Command (b) Transfer Command Value size (bytes)

Figure — Value Size CDF for RocksDB in a
production environment

(1) Fine-Grained Value Transfer g

« BandSlim employs a fine-grained inline value transfer mechanism
that piggybacks values smaller than a memory page size to NVMe
commands USing the reserved fields (gray-colored in Figure (a)&(b)).

dword | description dword | description 1 - .
dword0 commandID |P F| opcode dword0 commandID |P F | opcode _r-""
dword1 namespacelD dword1 namespacelD

dword?2
dword3

key 08 I

key

metadataPointer (PRP) metadataPointer (PRP) 06
dword6] dword6]
dword? PRPlistEntry1 dword? PRPIlistEntry1 0 4 i
PRPlistEntry2 PRPlistEntry2
valueSize valueSize 0 . 2 i r]
reserved option B reserved option keySize Value SiZC
dwordis reserved dwordis reserved 0 B S I
dword14 dword14 0 1 4 5 6
dwerd 4 tey G4 ey 10 104 /102 10° 10" 10° 10
(a) Write Command (b) Transfer Command Value size (bytes)

Figure — Vidlue Size CDF for RocksDB in a
production environment

(1) Adaptive Value Transfer Optimization ?;‘,

 When transmitting large values, generating and sending multiple
NVMe commands in this manner can result in longer response times.

* Thus, BandSlim also incorporates an adaptive value transfer strategy that
switches back and forth piggybacking and page-unit DMA.

Host
BandShm Key-Value Driver

ttttt

Piggybacking

L SM-Tree BandShm Key-Value Controller

with fine-grained

value addressing
NAND Flash

Device

(1) Adaptive Value Transfer Optimization ?;‘,

 When transmitting large values, generating and sending multiple
NVMe commands in this manner can result in longer response times.

* Thus, BandSlim also incorporates an adaptive value transfer strategy that
switches back and forth piggybacking and page-unit DMA.

Host
BandShm Key-Value Driver

Large Value T 1111

uu

Piggybacking

L SM-Tree BandShm Key-Value Controller

with fine-grained

value addressing
NAND Flash

Device

(1) Adaptive Value Transfer Optimization ?;

 When transmitting large values, generating and sending multiple
NVMe commands in this manner can result in longer response times.

* Thus, BandSlim also incorporates an adaptive value transfer strategy that
switches back and forth piggybacking and page-unit DMA.

Host
BandShm Key-Value Driver

ttttt ttttt

Piggybacking Page-Unit DMA

IO T I A A A B

L SM-Tree BandShm Key-Value Controller

with fine-grained

value addressing
NAND Flash

Device

(1) Adaptive Value Transfer Optimization ?;‘,

 When transmitting large values, generating and sending multiple
NVMe commands in this manner can result in longer response times.

* Thus, BandSlim also incorporates an adaptive value transfer strategy that
switches back and forth piggybacking and page-unit DMA.

Host
ttttt ttttt

Piggybacking Page-Unit DMA

R Ve A Sy

L SM-Tree BandShm Key-Value Controller

with fine-grained

value addressing
NAND Flash

Device

(2) Fine-Grained Value Packing A

 BandSlim implements a Selective Packing with Backfilling Policy
locating small values to fill the gap formed by the page-aligned, DMA-
transferred value under the adaptive value transfer method.

User Requests —p User Requests —p
A B C D [riovvack A B C D [ooonec PMALog Table

addr valueSize

D e = - BHEE P r-"======-= 1)
' ' r ~) page-unit ' ' r ~ page-unit
' ' l . _'DMA : : I L 1 DVA 4K | (4K+512)B

1
1
1

8K 12K 16K

(2) All Packing from KAML (b) Selective Packing w/ Backfilling

|
(2) Fine-Grained Value Packing A

 BandSlim implements a Selective Packing with Backfilling Policy
locating small values to fill the gap formed by the page-aligned, DMA-
transferred value under the adaptive value transfer method.

User Requests —p User Requests —p DMA Loa Tabl
_ og Table
A B C D | rigovback A B ---.(;----, D Wl poovoack vaglueSize
. l -_ BﬁAe-unit . ' I -"_. B?qgf‘““it 4K | (4K+512)B
Wft R .
i revTTe— T i ’
1 E 1 1
1 R .I_.: |
12K 16K 8K 12K 16K
(2) All Packing from KAML (b) Selective Packing w/ Backfilling

=» memory copies for large values = NO memory copies for large values

Evaluation

£)°

Evaluation Setup

* Testbed:

KV-SSD on
Cosmos+
OpenSSD
Platform

Table 1: HW/SW specifications of the OpenSSD platform.

SoC

Xilinx Zynqg-7000 with ARM Cortex-A9 Core

NAND Module 1TB, 4 Channel & 8 Way

Interconnect PCle Gen2 X8 End-Points

Table 2: HW/SW specifications of the host node.

CPU

Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz (32 cores)

Memory

384GB DDR4

(ON)

Ubuntu 22.04

)’

Evaluation Setup

» Test Configurations:

Baseline State-of-the-art LSM-based NVMe KV-SSD, IterKVSSD (Systor ’23).

Piggyback It transfers values using only piggybacking-based transfer method.

Adaptive It transfers values using the adaptive value transfer method.

£)°

Evaluation Setup

» Workloads (Meta’s db_bench):

W(A) fillseq, 1 million PUTs. The value size does not change.
w(B) fillrandom, 1 million PUTs, value sizes of 8 B or 2 KiB at a 9:1 ratio.

w(C) Same as W(B) but with the value size ratio reversed to 1:9.

fillrandom, 1 million PUTs, values sizes of 8 B, 16 B, 32 B, 64 B, 128 B,

W(D) 256 B, 512 B, 1 KiB, and 2 KiB with each size having an equal ratio.

mixgraph (real-world workloads with a maximum value size of 1 KiB
and almost 70% of values being under 35 B), 1 million PUTs.

W(M)

£)°

Evaluation Setup

» Workloads (Meta’s db_bench):

£)°

(1) Fine-Grained Value Transfer
Sequential Write Workload (W(A))

» Piggyback achieves a remarkable reduction in PCle traffic of up to 97.9%.

 As the value size increases with piggybacking applied, the PCle traffic and the
response time begins to increase due to the addition of trailing commands.

6 Baseline (Traffic) -%- Baseline (Response)
~ Piggyback (Traffic)
an) 5
o
o Ry
= 4
o
=37
H
1- R — K — S S e —— K —— X ———X
€, S >

0 | | I |

-100

T -
o]]
(stl) owr], asuodsay

I
()
o

4 8 16 32

| [| [| | [
64 128 256 512 1K 2K 4K
Value Size (B)

Figure 1. Total PCle Traffic and Avg. Response Time.

s

(1) Fine-Grained Value Transfer
Sequential Write Workload (W(A))

» Piggyback achieves a remarkable reduction in PCle traffic of up to 97.9%.

 As the value size increases with piggybacking applied, the PCle traffic and the
response time begins to increase due to the addition of trailing commands.

6 Baseline (Traffic) -%- Baseline (Response)
= Piggyback (Traffic) @ -© Piggyback (Response)
0>
g4
MM VIVUVUVAAAAI
$-|3_
H
82 /
S
1 Xf ‘——>é—{ -—>é—f ——>e: j_(Woa WA X/ 44 L U

0 | | I |

-100

T -
o]]
(stl) owr], asuodsay

I
()
o

| [| [| | [
4 8 16 32 64 128 256 512 1K 2K 4K
Value Size (B)

Figure 1. Total PCle Traffic and Avg. Response Time.

s

(1) Fine-Grained Value Transfer
Sequential Write Workload (W(A))

» Piggyback achieves a remarkable reduction in PCle traffic of up to 97.9%.

» As the value size increases with piggybacking applied, the PCle traffic and the
response time begins to increase due to the addition of trailing commands.

6 Baseline (Traffic) -%- Baseline (Responf®)
= Piggyback (Traffic) @ -© Piggyback (Respd se)
0>
o Ry
E4
o
=37
H
14 A —S - — X oSS 5 — e — 5K
€, S >

0 | | I |

-100

T -
o]]
(stl) owr], asuodsay

I
()
o

4 8 16 32

| [| [| | [
64 128 256 512 1K 2K 4K
Value Size (B)

Figure 1. Total PCle Traffic and Avg. Response Time.

s

(1) Fine-Grained Value Transfer ?§

Various Workloads (W(B) ~ W(M))

« Even though Piggyback can increase response times greatly, Piggyback still
Improved the average throughput by about 22% compared to Baseline for W(M).

« Above all, Adaptive proves to be the best in all workloads.

80+ 5-
W(B) m W(C W(D) B W(M) = W(B) ™ W(C) W(D) B W(M)
60- Chd
3 O
& £37
N 40+ @
9 £
N —_
20+ foE 1-
F
O 0 . : : — | -_
Baseline Plggyback Adaptlve Baseline Piggyback Adaptive
(a) Avg. Throughput (b) Total PCle Traffic

Figure 2. Performance analysis of transfer methods.

(1) Fine-Grained Value Transfer ?§

Various Workloads (W(B) ~ W(M))

« Even though Piggyback can increase response times greatly, Piggyback still
Improved the average throughput by about 22% compared to Baseline for W(M).

« Above all, Adaptive proves to be the best in all workloads.

80+ 5-
W(B) m W(C W(D) B W(M) = W(B) ™ W(C) W(D) B W(M)
60- Chl
3 O
& 3]
N 40+ @
g S2-
N —_
20 211
F
0 0 s S :
Baseline Plggyback Adaptlve Baseline\| Piggyback/ Adaptive
(a) Avg. Throughput (b) Total PCLe/ Traffic

Figure 2. Performance analysis of transfer methods.

(1) Fine-Grained Value Transfer ?;‘,

Various Workloads (W(B) ~ W(M))

« Even though Piggyback can increase response times greatly, Piggyback still
Improved the average throughput by about 22% compared to Baseline for W(M).

« Above all, Adaptive proves to be the best in all workloads.

80+ 5-
W(B) m W(C W(D) B W(M) = W(B) ™ W(C) W(D) B W(M)
60- Chl
o | o
@ 93
N 40+ @
g S2-
N —_
20 211
F
0 - T ;
Baseline Plggyback Adaptlve Baseline\| Piggyback/ Adaptive
(a) Avg. Throughput (b) Total PCLe/ Traffic

Figure 2. Performance analysis of transfer methods.

(1) Fine-Grained Value Transfer ?;‘,

Various Workloads (W(B) ~ W(M))

* Even though Piggyback can increase response times greatly, Piggyback still
Improved the average throughput by about 22% compared to Baseline for W(M).

« Above all, Adaptive proves to be the best in all workloads.

80+ 5-
W(B) m W(C W(D) B W(M) = W(B) ™ W(C) W(D) B W(M)
60- Chd
3 O
& £37
N 40+ @
9 £
N —_
20+ foE 1-
F
O 0 . : : — | -_
Baseline Plggyback Adaptlve Baseline Piggyback Adaptive
(a) Avg. Throughput (b) Total PCIe Traffic

Figure 2. Performance analysis of transfer methods.

(1) Fine-Grained Value Transfer ?;‘,

Various Workloads (W(B) ~ W(M))

* Even though Piggyback can increase response times greatly, Piggyback still
Improved the average throughput by about 22% compared to Baseline for W(M).

« Above all, Adaptive proves to be the best in all workloads.

80+ 5-
W(B) m W(C W(D) B W(M) = W(B)|™ W(C) W(D) B W(M)
60- Chd
3 O
& £37
N 40+ @
9 £
N —_
20+ foE 1-
F
O 0 . : : — | -_
Baseline Plggyback Adaptlve Baseline Piggyback Adaptive
(a) Avg. Throughput (b) Total PCIe Traffic

Figure 2. Performance analysis of transfer methods.

I
(1) Fine-Grained Value Transfer g

Various Workloads (W(B) ~ W(M))

* Even though Piggyback can increase response times greatly, Piggyback still
Improved the average throughput by about 22% compared to Baseline for W(M).

« Above all, Adaptive proves to be the best in all workloads.

The proposed approach performs better than the baseline under
real-world workloads while reducing PCle traffic significantly.

I \ [0 | [— I -_
Baseline Piggyback Adaptive Baseline Piggyback Adaptive
(a) Avg. Throughput (b) Total PCle Traffic

Figure 2. Performance analysis of transfer methods.

(1) Fine-Grained Value Transfer ?;‘,

Various Workloads (W(B) ~ W(M))

* Even though Piggyback can increase response times greatly, Piggyback still
Improved the average throughput by about 22% compared to Baseline for W(M).

« Above all, Adaptive proves to be the best in all workloads.

80+ 5-
W(B) ™ W(C) UKXD) B W(M) = W(B) ™ W(C) W(D) B W(M)
60- Chd
3 B/ o
@ 53
N 40+ @
9 £
N —_
20+ %’1_
F
O LANCEER /dun — R AT, Y
Baseline Piggyback Adaptive Baseline Piggyback\Adaptive
(a) Avg. Throughput (b) Total PCIe Traffic

Figure 2. Performance analysis of transfer methods.

I
(1) Fine-Grained Value Transfer @

Various Workloads (W(B) ~ W(M))

* Even though Piggyback can increase response times greatly, Piggyback still
Improved the average throughput by about 22% compared to Baseline for W(M).

« Above all, Adaptive proves to be the best in all workloads.

If we cover most of values by piggybacking, and large values by
fast DMA, we can achieve an optimal transfer performance.

I \ [0 | [— I l
Baseline Piggyback Adaptive Baseline PiggybackN\Adaptive
(a) Avg. Throughput (b) Total PCle Traftic

Figure 2. Performance analysis of transfer methods.

Evaluation Setup

» Test Configurations:

Block The baseline block-based page-unit payload packing of NVMe SSDs.
All The All Packing Policy from KAML
Select The Selective Packing Policy proposed in BandSlim

Backfill The Selective Packing with Backfilling Policy proposed in BandSlim

£)°

(2) Fine-Grained Value Packing A

Various Workloads (W(B) ~ W(M))

« With packing applied, the total number of NAND writes reduces greatly.

» Backfill reduces NAND writes as much as All in small-value-dominant workloads
(W(B) & W(M)).

_600- 25-
e W(B) WI(C) W(D) Bl W(M) W(B) WI(C) WD) R W(M)
—500- i

= ~20

3400- =

U lab) 15_

o300 =

= £10-

~200- =

Z100- Sk,

Z .] =

1 - I I — 1 . .

Block All Select Backfill Block All Select Backfill

(2) Total NAND I/0O Cnt. (b) Avg. Memcpy Time
Figure 3. Performance analysis of in-device packing policies.

The host uses the adaptive value transfer method.

(2) Fine-Grained Value Packing A

Various Workloads (W(B) ~ W(M))

 Block shows the worst performance regardless of the workload.
» Selective performs as poorly as Block in large-value-dominant situations (W(C)).

_600- 25-
e WI(E) W(C) W(D) Bl W(M) W(B) WI(C) WD) R W(M)
—500- i

= ~20

3400- =

U lab) 15_

o300 =

= £10-

~200- =

Z100- Sk,

Z .] =

1 - I I — 1 . .

Block All Select Backfill Block All Select Backfill

(2) Total NAND I/0O Cnt. (b) Avg. Memcpy Time
Figure 3. Performance analysis of in-device packing policies.

The host uses the adaptive value transfer method.

(2) Fine-Grained Value Packing
Various Workloads (W(B) ~ W(M))

s

 Block shows the worst performance regardless of the workload.
» Selective performs as poorly as Block in large-value-dominant situations (W(C)).

~600-

W(B) W(C) W(D) Il W(M)
S i e R
Block All Select Backfill

(a) Total NAND I/O Cnt.

W(B) W(C) W(D) l W(M)

Blﬁck z_’-slll Séllect Bﬁc]kﬁjl
(b) Avg. Memcpy Time

Figure 3. Performance analysis of in-device packing policies.

The host uses the adaptive value transfer method.

(2) Fine-Grained Value Packing
Various Workloads (W(B) ~ W(M))

s

 Block shows the worst performance regardless of the workload.
» Selective performs as poorly as Block in large-value-dominant situations (W(C)).

~600-

W(B) W(C) W(D) Il W(M)
S i e R
Block All Select Backfill

(a) Total NAND I/O Cnt.

W(B) W(C) W(D) l W(M)

Blﬁck z_’-slll Séllect Bﬁc]kﬁjl
(b) Avg. Memcpy Time

Figure 3. Performance analysis of in-device packing policies.

The host uses the adaptive value transfer method.

(2) Fine-Grained Value Packing A

Various Workloads (W(B) ~ W(M))

 Block shows the worst performance regardless of the workload.
» Selective performs as poorly as Block in large-value-dominant situations (W(C)).

_600- 25-
e W(B) WI(C) W(D) Bl W(M) W(B) WI(C) WD) R W(M)
—500- i

= ~20

3400- =

U lab) 15_

o300 =

= £10-

~200- =

Z100- Sk,

Z .] L

1 - I I — 1 . .

Block All Select Backfill Block \ All/ Select Backfill

(2) Total NAND I/0O Cnt. (b) Avg. Memcpy Time
Figure 3. Performance analysis of in-device packing policies.

The host uses the adaptive value transfer method.

(2) Fine-Grained Value Packing A

Various Workloads (W(B) ~ W(M))

 Block shows the worst performance regardless of the workload.
» Selective performs as poorly as Block in large-value-dominant situations (W(C)).

180+ 30-
0 W(B) W(C) W(D) M W(M) W(B) W(C) WD) l W(M)
2150- 25-
©
£120- 5 20-
= 90- 515—
g 2,
o
g 60- 210+
% 30 5
@ B B
: 111
| - = =5 0-
Block All Select Backfill Blnck Select Backﬁ]l
(c) Avg. Resp. Time (d) Avg. Throughput

Figure 3. Performance analysis of in-device packing policies.

The host uses the adaptive value transfer method.

(2) Fine-Grained Value Packing A

Various Workloads (W(B) ~ W(M))

 Block shows the worst performance regardless of the workload.
» Selective performs as poorly as Block in large-value-dominant situations (W(C)).

_180- 30-
w W(B) WI(C) WD) R W) WD) Hm W(M)
2150- 25/

D

=120

w0
L'IJ
Kops/sec

W(B) W(C)
70-
15- I I
10-
P N Al
o- < W i M T M 0°

Block All Select Backfill Block Select Backflll
(c) Avg. Resp. Time (d) Avg. Throughpit
Figure 3. Performance analysis of in-device pacldngpoOlicies.

The host uses the adaptive value transfer method.

Response Ti
D
<

(2) Fine-Grained Value Packing
Various Workloads (W(B) ~ W(M))

 Block shows the worst performance regardless of the workload.

s

» Selective performs as poorly as Block in large-value-dominant situations (W(C)).

_180- 30-
w W(B) WI(C) WD) R W) W(B) W(C) WD) Hm W(M)
2150- 25/

D

=120

w0
L'IJ
Kops/sec

Response Ti
D
<

Block All Select Backfill Bﬂmk All Saect Ba_c|kﬁjl
(c) Avg. Resp. Time (d) Avg. Throughpit

Figure 3. Performance analysis of in-device pacldngpoOlicies.

The host uses the adaptive value transfer method.

20-
151 —-nR-- Rl
10-

111

o <=M L W M 8 0° -

(2) Fine-Grained Value Packing A

Various Workloads (W(B) ~ W(M))

* However, in scenarios where small values predominate, such as in W(B) or W(M),
the throughput of the Selective dips by at most 4.5% compared to the All.

» Backfill showcases the most optimal performance gefoss both VW) and W(M).
180- 30-

) W(B) W(C) W(D) M W(M) W(B) W(C) WD) l W(M)
2150- 25
R I N 4 e = &
£120- g 204 oW
= 90- ﬁ“ [5
@ o
o
g 60- 210~
% 30 5
o i X
: 111} I
| - = =5 0N e = —
Block All Select Backfill Block All Select Backfill
(c) Avg. Resp. Time (d) Avg. Throughpit

Figure 3. Performance analysis of in-device pacldngpoOlicies.

The host uses the adaptive value transfer method.

|
(2) Fine-Grained Value Packing A

Various Workloads (W(B) ~ W(M))

« However, in scenarios where small values predominate, such as in W(B) or W(M),
the throughput of the Selective dips by at most 4.5% compared to the All.

» Backfill showcases the most optimal performance gefoss both VW) and W(M).

Each packing policy has its own strengths and weaknesses, but the
proposed approach performs better under real-world workloads.

0] 0_]]]
Block All Select Backfill Block All Saect Backfill
(c) Avg. Resp. Time (d) Avg. Throughpit

Figure 3. Performance analysis of in-device pacldngpoOlicies.

The host uses the adaptive value transfer method.

Conclusion

£)°

I
Conclusion g

We introduce BandSlim to address the incompatibilities between

traditional block-interfaced storage protocols (e.g., NVMe) and the new
key-value interface of KV-SSDs.

The mismatch leads to excessive traffic on the PCle interconnect and
amplified NAND write 1/Os, significantly degrading performance.

BandSlim effectively resolves these issues by enabling a Fine-Grained
Value Transfer and Efficient, Fine-Grained In-Device Value Packing.

Thank You
Q&A

Presenter: Youngjae Kim
Contact: youkim@sogang.ac.kr

£)°

mailto:junttang@sogang.ac.kr

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114

