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Abstract—In this paper, we propose OctoKV, an innovative
network-based key-value storage system. OctoKV addresses the
repetitive address translation overhead associated with tradi-
tional key-value stores running on file systems on the client side.
To mitigate this overhead, we implemented the key-value store
on the server side using NVMe-oF and a user-level NVMe driver.
In particular, we employed fine-grained resource monitoring and
load balancing based on heuristics to optimize I/O performance.
OctoKV is deployed on a Linux cluster with Intel SPDK. The
extensive evaluation shows that OctoKV achieves lower I/O
response times in comparison to traditional approaches where
key-value stores run on the client side. Also, the proposed load
balancing strategies efficiently enhance I/O response times by
equally distributing the workload from overloaded cores to other
cores.

Index Terms—High Performance I/O, Key-Value Store, Storage
System, I/O Scheduling

I. INTRODUCTION

Disaggregated storage is becoming increasingly popular in
modern computing environments, necessitating the adoption
of Key-Value Stores (KVS) due to its proven superiority of
key-based lookup, high performance, and scalability. While
research on network in-memory KVS has been proposed in
cluster environments [1, 2, 3], these solutions have primarily
focused on designing in-memory caches for fast read opera-
tions, rather than exploring persistent storage capabilities.

The adoption of KVS in network-based persistent storage
systems, such as Storage Area Networks (SANs), has been
relatively neglected. The traditional KVS, such as RocksDB
and LevelDB, running on a file system in a SAN environment
introduce various overheads at multiple layers. For instance,
when a client sends a KV request, file system operations incur
overheads due to the conversion of key-value pairs to files
and files to block addresses. Further, running KVS atop the
file system introduces OS overheads like user-kernel mode
switching, interrupt handling, and context switching.

To overcome such multiple address conversion and OS-
related overhead, Key-Value SSDs [4, 5, 6, 7] have imple-
mented the KV storage engine directly within the SSDs. This
design allows applications to directly access the SSD, bypass-
ing the cumbersome OS stack. An alternative in parallel, the
Intel Storage Performance Development Kit (SPDK) [8] has
revolutionized storage system design, providing a framework
specifically tailored to harness the full potential of ultra-low
latency NVMe SSDs. SPDK user-level NVMe driver with
polled mode significantly mitigates the performance overheads
associated with traditional OS. By reducing context switching
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between user and kernel modes and eliminating expensive
interrupts, SPDK unlocks the true capabilities of NVMe SSDs,
pushing the boundaries of storage performance. Due to the
superiority of SPDK, efforts have been made to adopt SPDK
to build high-performance KVS for single node systems such
as SpanDB [9], EvFS [10] and TridentKV [11]. Further, SPDK
extends support to NVMe over Fabrics (NVMe-oF), enabling
the development of disaggregated storage architectures that
offer exceptional performance and scalability.

Based on these foundations, there exists an intriguing oppor-
tunity to leverage SPDK capabilities in constructing a network-
based KVS. Therefore, it seems trivial to mitigate OS and
file system-related overheads by extending a network-based
KVS using SPDK. However, with careful investigation of
the shared-nothing design employed by SPDK, we uncover
critical load-imbalance problems and reveal lack of a data
structure sharing between cores, resulting in load disparities,
particularly in skewed workloads. Specifically, we identify two
pivotal challenges as follows;

First, there is a load imbalance issue among TCP connec-
tions, where clients send NVMe commands over TCP to the
server. While clients establish multiple TCP connections, and
the server runs corresponding SPDK threads to process these
commands, the workload distribution among connections is
uneven. This imbalance results in some connections receiving
a heavier workload, leading to delays in I/O response time.

Second, running the KV storage engine on the server
increases the CPU load, and oftentimes contributes to the load
imbalance problem. Notably, hash and LSM-tree-based KV
storage engines impose CPU-intensive tasks such as executing
hash computations and merge-sorts during compaction. Such
added CPU burden further contributes to delays in response
time, with the TCP layer unaware of these application pro-
cesses. Therefore, threads on connections experiencing high
load significantly impact the overall response time.

Therefore, in this work, we introduce OctoKV, an agile
server-side key-value store, leveraging the robust capabilities
of Intel SPDK for disaggregated storage architectures. Notably,
OctoKV avoids the kernel overhead associated with operating
on top of the OS, as well as eliminates the file system overhead
related to multiple address conversions. OctoKV addresses the
load imbalance problems by designing an I/O event migration
scheme to distribute the load of I/O between SPDK cores. The
key idea is load-aware fine-grained scheduling. To the best of
our knowledge, our work is the first to migrate events between
cores for CPU load balancing in SPDK.

We conduct experiments on two servers connected via



a 10Gbps Ethernet, using a slightly modified version of
RocksDB db bench benchmark to evaluate the performance
of OctoKV. Based on results, OctoKV shows 12% lower I/O
response time in “Fill Random” workload compared to in-
house hash-based KVS with EXT4 file system mounted on
block-based NVMe-oF device. Further, the proposed IO event
migration scheme shows 12% reduction in I/O response time
compared to a baseline OctoKV without migration scheme.

II. BACKGROUND

A. Event-Driven User-level NVMe Drivers
Intel SPDK [8] is one of the most popular storage frame-

works for building a high-performance storage system with
ultra-low latency NVMe SSDs. To achieve low latency and
high throughput, SPDK offers a user-mode NVMe driver with
polled-mode. The NVMe driver enables SPDK to mitigate
additional latency in the I/O response time of fast SSDs. This
latency arises when the SSD latency is lower than the time
needed for interrupt and getting completion. Moreover, SPDK
employs a sophisticated per-core lock-less event framework
to effectively alleviate the potential lock contention arising
from shared memory among cores, thus achieving optimal
performance. Consequently, the client I/O request is intricately
bound to a single core, with the request seamlessly divided into
multiple events that are meticulously processed in a sequential
manner by the designated core.

In SPDK, BDEV serves as a fundamental component of the
SPDK block device layer. Each event within the system must
be processed by the BDEV. BDEV offers a pluggable module
API for implementing block devices that interface with block
storage devices. Users have an option to utilize existing BDEV
modules or create virtual BDEV (VBDEV) modules, which
enable the construction of block devices on top of an existing
BDEV. These BDEV operations collectively constitute a com-
prehensive I/O request. Through the virtual BDEV mechanism,
SPDK can generate events for other BDEVs. Users have the
freedom to modify VBDEV as a user-defined function and
insert it within the I/O path to perform necessary operations
such as compression or encryption during I/O processing. Each
core operates a dedicated thread known as a Reactor, which
sequentially processes multiple pollers (functions).

B. Network-Based Block Storage
NVMe-oF is a protocol designed to connect hosts to storage

across a network fabric using the NVMe protocol. It enables
data transfers between a host and target SSD or system over a
network through an NVMe command. The data corresponding
to the NVMe command is transferred through networks such
as Ethernet, Fibre Channel (FC), or InfiniBand. The users
connect the remote NVMe SSD through the NVMe-oF as a lo-
cal NVMe SSD, allowing fundamental storage disaggregation.
Note that, this work is targeted for such storage disaggregation
environments. SPDK supports the NVMe-oF for both RDMA
and TCP transports with providing NVMe-oF hosts for client-
side NVMe drivers and targets for server-side. A typical KVS
runs on the file system of block storage (local or network
block storage). On the server, SPDK runs the NVMe-oF target
BDEV, and NVMe driver BDEV to handle the I/O request
from the client. The NVMe-oF target BDEV receives the

Fig. 1. An illustration of IO flow in network-based block storage using SPDK.

client’s NVMe commands through socket queues. The NVMe
driver BDEV generates block I/O and delivers it to the SSD.

Figure 1 depicts the software stack when running a KVS
on SPDK-based network block storage and demonstrates that
how a server-side SPDK processes I/O requests from the client.
When the server is running, SPDK spawns N SPDK threads,
also referred to as Reactors, with the value of N determined
by the user. Each thread (Reactor) is assigned to a dedicated
core in a 1:1 mapping. The Reactor, bound to the core of
SPDK, uses two pollers (functions) in a round-robin order to
poll the queues required for I/O processing. Specifically, the
Reactor sequentially executes Poller1 (P1) to poll the socket
queue containing NVMe commands and Poller2 (P2) to poll
the completion queue holding completed I/Os from the SSD.

Next, we describe how Reactor utilizes pollers to handle the
client’s I/O requests. 1 The application sends a Get/Put KV
request to the key-value store. The key-value store converts
the key-value request into file I/O request and forward it to
the kernel-space file system. 2 The file system converts file
I/O request into block I/O requests and passes them to the
NVMe-oF driver. 3 The NVMe-oF driver converts block I/O
into NVMe commands and 4 forwards to the NVMe-oF target
using the NVMe-oF protocol. 5 The NVMe command sent
by the client is stored in the socket queue of the NVMe-
oF target. 6 Subsequently, the SPDK Reactor sequentially
executes the pollers. Firstly, the poller (P1) checks the socket
queue, dequeuing an item (the NVMe command sent from the
client) if it is not empty. 7 Secondly, P1 sequentially processes
the NVMe command by executing the NVMe-oF target BDEV,
any user-defined (V) BDEVs, and the NVMe driver BDEV.
The NVMe-oF target BDEV converts the NVMe command
received from the client into the SPDK’s I/O format (bdev-io).
8 Users can perform desired processing on I/O through user-
defined VBDEV. 9 Then, the NVMe driver BDEV converts
the bdev io into block I/O and 10 enqueues it into the sub-
mission queue. 11 The Reactor proceeds to execute the next
poller, P2. P2 examines the completion queue of the NVMe
driver to determine if there are any completed I/O operations
from the SSD. If there are completed operations present in
the queue, P2 dequeues and processes them accordingly. In the
event that the completion queue is empty, the Reactor resumes
executing P1 ( 6 ). Else, P2 notifies the NVMe driver BDEV
and the NVMe-oF target BDEV through callbacks that the I/O
operations are completed.
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Fig. 2. The analysis of the correlation between core utilization and I/O latency.

III. MOTIVATION

In OctoKV, the client requests (NVMe commands) are sent
through NVMe-oF to the server. The server utilizes SPDK
user-level NVMe driver, which employs a per-core lock-less
event framework. This framework enables fast I/O processing
without the need to share data structures or connections among
SPDK threads. On the server, NVMe-oF target establishes
TCP connections with the client, with a number of connections
equal to the number of Reactors.

Note that, we highlighted the concerns regarding load
balancing in the SPDK NVMe-oF framework in Section I.
Here, we conducted experiments to empirically verify these
issues and their impact.

1) Queue Depth Analysis: We conducted a series of experi-
ments to verify that the SPDK’s NVMe-oF framework exhibits
a lack of load balancing across server cores during I/O request
processing. The experiments were performed on two servers
connected by a 10Gbps network, where we used light and
heavy workloads on the clients for both Put and Get requests,
respectively. These requests were forwarded to the server
using NVMe-oF. Further details on experimental setup can be
found in Section V-A. We measured the queue depth, which
represents the number of outstanding NVMe commands, on
each core/SPDK thread TCP connection (socket queue) for
each workload execution. Note that, the experimental results in
Table I do not include the key-value storage engine overhead.

We observed that increasing the workload for Put requests
results in a more significant load imbalance. For light workload
(Put), the standard deviation was 0.78. However, under heavy
workloads, the deviation increased by approximately 2.2 times
to 1.70 as shown in Table I. Specifically, in heavy workload,
core#1 and core#2 processed about 2 to 3 times more I/O
requests compared to the other cores. Notably, the queue depth
is larger for Get compared to Put workload. We noticed a
similar trend as in Put, i.e., load imbalance becomes more
severe for heavier Get workload.

2) Core Utilization vs I/O Latency: The queue depth has a
positive correlation with the CPU utilization of the respective
core. We measured the correlation between I/O latency and
CPU utilization and report the results in Figure 2. Note
that, the I/O latency is measured by the server, rather than
the I/O response time from the client. Overall, it shows an
increasing trend of I/O latency as core utilization increases.
Figure 2(a)&(b) show the results for Put workloads. As
observed in Table I, in light workload (Put), core utilization
is evenly distributed from 0.0 to 0.8. On the contrary, heavy
workload (Put) show a significant difference in queue depth
between cores, resulting in a bimodal distribution of core
utilization between cores. As a result, high core utilization
means that SPDK threads must handle a larger number of I/Os,

TABLE I
AVERAGE QUEUE DEPTH (QD) WITH NVME COMMANDS PER CORE. C(I)

REPRESENTS THE CORE WITH CORE ID=I. LW AND HW DENOTE LIGHT
AND HEAVY WORKLOAD, RESPECTIVELY.

QD C(1) C(2) C(3) C(4) C(5) C(6) Avg Stdev

LW(Put) 2.00 2.21 0.75 1.58 0.67 0.33 1.26 0.78
HW(Put) 5.25 5.48 2.00 2.06 2.13 2.13 3.18 1.70

LW(Get) 3.95 4.23 1.27 1.36 2.00 1.82 2.43 1.31
HW(Get) 6.06 6.54 2.69 2.62 2.92 2.65 3.91 1.86

TABLE II
CPU LOAD BASED ON THE EXECUTION OF THE KV STORAGE ENGINE.

Light Workload (LW) Heavy Workload (HW)
Baseline OctoKV Baseline OctoKV

Avg 0.315 0.339 (7.7%) 0.436 0.491 (12.6%)
Stdev 0.236 0.263 (11.4%) 0.230 0.213 (-7.3%)

consuming more CPU cycles, thus increasing I/O latency. For
example, the average I/O latency of the core with the highest
core utilization, core #1, is 38μs, while the average I/O latency
of the core with the lowest core utilization, core #6, is 19μs.
In other words, core #1 exhibits approximately twice the I/O
latency compared to core #6. Thus, there is a high potential
for balancing the arrival of I/O requests between cores with
high core utilization and cores with low core utilization, which
can lead to improved response times.

Figure 2(c)&(d) show the results for Get workload. For the
light workload (Get), the core utilization is evenly distributed
from 0.0 to 0.4. Whereas, the heavy workload (Get) exhibits
a bimodal distribution. Similar observations were obtained as
those shown in Figure 2(a) and (b).

3) Increase in CPU Load: To further study the increase in
CPU load and load imbalance, when running the KV storage
engine on the server, we measured the average and standard
deviation of CPU utilization in two scenarios: i) running the
KV storage engine (OctoKV) and ii) not running it (baseline).
We report the results in Table II. The percentage (%) in results
indicates the growth rate. For the light workload, OctoKV
shows an approximate 7.7% increase in CPU load compared
to the baseline. Additionally, it demonstrates an increase of
approximately 11.4% in the variance of CPU core utilization.
On the other hand, for the heavy workload, as expected,
OctoKV exhibits an increase of approximately 12.6% in CPU
load compared to the baseline. However, since the heavy
workload already has high utilization of cores, it actually
shows a decrease of approximately 7.3% in the variance of
CPU core utilization. Nevertheless, there is still an imbalance
in CPU core utilization.

IV. OCTOKV: PROPOSED SYSTEM

A. System Overview

OctoKV is a network-based server-side KV storage system,
with multiple clients allowed to access the storage through it.



Fig. 3. An overview of OctoKV.

A client can host multiple applications, with each application
using the key-value APIs to access the storage. Furthermore,
in OctoKV, the application has the capability to bypass the
kernel. And, the server runs SPDK which includes OctoKV
Storage Engine (OKSENG), OctoKV Monitoring (OKM), and
OctoKV Scheduler (OKS) modules to enable a robust and
efficient I/O load orchestration. Figure 3 presents the overview
of OctoKV. The modules between the NVMe-oF target BDEV
and the NVMe driver BDEV are server-side components of
OctoKV, and implemented as VBDEVs in SPDK.

The OKSENG manages key-value pairs to enable clients
to read and write on the NVMe SSD in the server, and it
adopts data structures typically employed by KVSs such as
hash or LSM-tree. The OKM monitors the utilization of each
core at a fixed time interval. Note that, the interval window for
collecting per core utilization is a tunable parameter and can
be tuned as per desired configurations. Afterward, the OKM
analyzes the per-core utilization to determine if any cores are
overloaded. If the OKM identifies the load imbalance problem,
it informs the OKS to make robust scheduling decisions to
efficiently distribute the load among the cores. Specifically,
without making shared space between cores, OKS uses a
messaging framework, such as messages and message queues
to migrate I/O operations/events from busy cores to idle cores
(refer to MsgQ in Figure 3).

B. Client API and Driver Module

We developed a key-value API library, i.e., Put() and Get(),
which allows user-level applications to interact with network-
based key-value storage using the NVMe protocol. The user
requests NVMe I/O commands directly to the NVMe Driver
through NVMe I/O passthrough. Moreover, to send key-value
operations (Put and Get) through the NVMe command, we
extended the existing NVMe protocol. Specifically, we store
the operation identifier (Put or Get) in the opcode area of the
NVMe command and save the key in the LBA address area.
Note that, we specified the buffer size, which represents the
size of the buffer used to store data to be sent (Put) or data to
be received (Get), in the reserved area of the NVMe command.

C. OctoKV Storage Engine

We implemented OctoKV Storage Engine (OKSENG) in
SPDK to minimize I/O software overhead on the server, i.e.,
bypassing the storage server’s kernel stack. The clients access
key-value pairs on the network as if they are in local KVS.
Note that, for the OKSENG, existing data structures such as

hash and LSM-tree can be employed. We implemented a hash-
based KVS to validate the usefulness of our proposed server-
side key-value store approach and avoid some unpredictable
performance degradation caused by compactions of the LSM
tree.

The OKSENG comprises three primary modules: (i) a
key-based hash function (SHA-1), (ii) a bitmap array for
efficient management of empty space on NVMe SSDs, and
(iii) a hash table that maintains logical block addresses and
their corresponding key-value pairs on the SSDs. To ensure
thread-safety, mutex locks are employed to protect shared data
structures. However, locking the entire array or table with a
single lock results in lock contention and limited concurrency.
To mitigate this performance issue, we partition the bitmap
array and hash table into 2n units, where n is the number of
bits used for partition selection, and perform critical section
protection for each partition. The partition to use for a given
key is determined by its hash value. The n most significant
bits of the hash value are used to select the starting partition
for the bitmap array and hash table. The next 2n bits of the
hash value are used to determine the index in the hash table.
The size of the hash value we use is 20B.

Meanwhile, the partition of the bitmap array tracks the avail-
ability of empty blocks in the partition itself, after dividing
the total capacity of the storage device by 2n. Using the first-
fit algorithm, if the required number of consecutive empty
blocks are found in the partition, the logical block address
of the starting block is assigned. We set n to 4 for all the
experiments conducted in Section V.

D. OctoKV Monitoring Module

The OKM VBDEV measures each core utilization in a fixed
time interval window (W ). Fortunately, SPDK provides a set
of functions to analyze and report the CPU cycles, performing
real tasks (excluding pollings). Therefore, OKM uses these
functions to obtain an array of consumed CPU cycles for each
core, and then performs internal computations for scheduling.
And ultimately, OKS performs load balancing among the cores
if the computation satisfies the following two conditions at
each time interval window (W ).

• CPU Overloading: This condition determines whether
there is at least one overloaded core in the system. OKM
compares the utilization of each core with a user-defined
threshold value (TOL), which ranges from 0.0 to 1.0. Setting
TOL too low may incorrectly judge a core to be heavily
loaded even if it is not, while setting it too high may
incorrectly judge a heavily loaded core to be underutilized.
Therefore, it is crucial to properly configure TOL based on
the specific system environment.

• Load Imbalance: After satisfying the overloading condi-
tion mentioned above, OKM proceeds to check for load
imbalance among the cores using the following equation:
Max{(fcutil(C))} − Min{fcutil(C)} > TLB . In this
equation, fcutil(ci) represents the utilization of core ci,
where i ranges from 1 to n. The core group C consists
of n cores (c1 to cn). The equation calculates the difference
between the maximum and minimum core utilization values
of all cores and compares it with a predefined threshold



value (TLB), which ranges from 0.0 to 1.0. Similar to TOL,
TLB is set by the user and, if not properly configured, may
lead to incorrect judgments of load imbalance occurrence.
Therefore, both TOL and TLB must be properly set.

When both of these conditions are satisfied, OKM catego-
rizes the cores into two groups based on their utilization: a
group with high core utilization and a group with low core
utilization. We use the average utilization of all cores (Uavg)
as the criterion to differentiate between these two groups.
During load balancing, the OKS migrates I/O requests from
cores in the high group to cores in the low group. In the
previous description, we referred to two groups as high and
low. However, our approach outlined above can be easily
extended to accommodate more than two groups.

Meanwhile, the OKM operates on a single core at a time,
dynamically selecting the core with the lowest utilization for
each time interval (W). The initial core selected is core #1
of the system. Only the Reactor with the lowest utilization
actually executes the OKM. And, the per-core utilization data
and group configuration provided by the OKM can be globally
accessed by every OKS VBDEV of each Reactor.

E. Load-Aware Balanced I/O Scheduling

When the cores are not balanced correctly, I/O requests pro-
cessed on overloaded cores may experience delays due to long
wait times in the event queue. In order to mitigate this issue,
OKS dynamically migrates I/O requests from overloaded cores
to cores that are not overloaded at runtime. This proactive load-
balancing strategy reduces wait times and enhances overall
system performance. If both the CPU overloading condition
and the load imbalance condition are met, OKM triggers the
OKS to perform migrations for load balancing.

When processing an I/O request from the client on the
server, OctoKV goes through the following three stages:
NVMe-oF target, KV store, and NVMe driver. The NVMe-
oF target retrieves an I/O request in the NVMe-oF format
that arrived on the TCP connection and converts the request
into multiple I/O (NVMe) commands to enable the user-
level NVMe driver to process it. The KV store (OKSENG
VBDEV) involves indexing-related operations. As described
in Section IV-C, the hash function is executed for the key, and
the put/get operation is performed on the index data structure.
Finally, the NVMe driver sends NVMe commands directly to
the SSD and waits for a callback. All the operations executed
in the KV store and NVMe driver are managed as I/O events
of SPDK.

However, the NVMe-oF target stage must execute on the
core where the I/O request arrives. It is because NVMe
commands generated from the received operation need to be
converted into SPDK events, enabling them to be properly
handled within the SPDK event handling process. The SPDK
event handling process includes pushing events to the message
queue for migration, which will be discussed in detail shortly.
Thus, the NVMe-oF target stage is initially executed on the
same core it arrives. On the other hand, the remaining stages
do not have this limitation since they are already SPDK events.
Thus, they can be freely moved to other cores for execution
at anytime.

The CPU cycle consumption of each stage varies depending
on the system configuration and the I/O access pattern. If the
system is supported by fast networks, such as 100Gbps Ether-
net, the NVMe-oF target stage could take a shorter amount of
time compared to the other stages. If the embedded KV store is
based on the LSM-tree structure and compactions occur, then
the KV store stage could be longer than others. Therefore,
due to the variable nature of this consumption, we introduce
notations for the consumption of each stage: RoF , RKV , RD,
average percentage of how much each stage accounts for the
total time, respectively. Note that, the NVMe-oF target stage
cannot be moved, whereas other stages can move. Therefore,
the maximum benefit obtained from migrating events is a
(RKV +RD) decrease in the migrating core utilization.

1) How many I/O events for migration?: Next, we discuss
the basis for the algorithm that utilizes thresholds to determine
the number of events that can be migrated from high-utilization
group cores to low-utilization group cores. This decision is
crucial as transferring an excessive number of I/O events can
potentially overload the cores in the low-utilization group.

For simplicity, we assume that (i) each group has only one
core, and (ii) the core (Chigh) in the high group has a core
utilization of Uhigh and total Nhigh events in the KV store and
NVMe driver stages, while the core (Clow) in the low group
has a core utilization of Ulow and total Nlow events in the KV
store and NVMe driver stages.

Our specific interest is to find out how many events among
Nhigh events should be migrated from Chigh to Clow. Note
that even if all Nhigh events in the KV store and NVMe driver
stages of Chigh are moved to Clow, the decrease in Uhigh is
at most (RKV +RD) of Uhigh since RoF of total time cannot
be reduced due to the aforementioned limitation. If Ulow is
low enough so that Ulow + Uhigh × (RKV + RD) is still
below a certain threshold (T ), we move all Nhigh events from
Chigh to Clow. However, if Ulow + Uhigh × (RKV +RD) is
above the threshold (T ), we calculate the following ratio (R):

T−Ulow

Uhigh(RKV +RD) , (0.0 ≤ R ≤ 1.0). Then, we migrate Nhigh

× R events from Chigh to Clow. Here, we use the threshold
as Uavg . In our experimental environment which supports the
10Gbps Ethernet and implements the simple hash-based KV
store, the NVMe-oF target stage consumes approximately 80%
(RoF ) of core utilization, while the remaining 20% (RKV +
RD) is taken up by the KV store and NVMe driver stages.
Until now, we assumed that each group has only one core,
but even when each group is composed of multiple cores, the
proposed algorithm can be easily extended based on it.

2) Scheduling Heuristics: Here, we determine which core
in the low group the events need to be migrated to. The
key objectives of OKS are: (i) to minimize the I/O response
time, and (ii) to reduce the overhead of making decisions for
scheduling. We pointed out that minimizing the time spent
for making scheduling decisions is critical as spending too
much time on the decision making causes to increase the
I/O response time even after load-balancing. Therefore, we
propose two scheduling strategies that attempt to strike a
balance between these two competing objectives based on
heuristics.

• RoundRobin (RR): Tasks are assigned to each core in the



TABLE III
HARDWARE/SOFTWARE SPECIFICATIONS OF SERVERS.

Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz
CPU (Client) 10 cores @ 2.40GHz, (Storage) 6 cores @ 1.80GHz
Memory, Disk 32GB DDR4, 500 GB Samsung 970 EVO SSD
Interface NVMe-oF (10 Gbps Ethernet)
Software Ubuntu 20.04, SPDK v.21.10, RocksDB v.6.23

low group in a round-robin order, regardless of the utiliza-
tion of each core. For example, when the fcutil() values of
core#3 and core#4 are 0.2 and 0.3, the RR algorithm assigns
tasks to both cores in a 1:1 ratio.

• Proportional Share (PS): Tasks are placed in proportion to
how much each core in the low group can handle without
being overloaded. Suppose, the core utilization fcutil()
available for each core in the low group is Uavg - fcutil().
For example, when fcutil() values of core#3 and core#4 are
0.2 and 0.3 and Uavg=0.4, the PS algorithm assigns tasks
to core#3 and core#4 in a ratio of 2:1.

F. Implementation

We implement the migration in message passing infrastruc-
ture of SPDK [12]. SPDK adopts a message passing method
instead of a traditional locking method to enable concur-
rency in multi-threaded programming and to achieve linear
scalability with the addition of storage devices. In SPDK,
each Reactor thread has its own message queue, allowing
multiple Reactors to communicate with each other by sending
events as messages to each other’s message queues. As part
of this mechanism, the Reactor checks its message queue for
any pending messages to retrieve between the executions of
two pollers, P1 and P2 (refer to Section II-B). Therefore,
we employ it to implement the proposed load balancing
algorithm. We have made slight modifications to the message
queue poller routine of each Reactor to execute OKSENG
VBDEV for migrated events, thus enabling the utilization of
per-core message queues as channels for event migrations.
Subsequently, the OKS of Reactor in the high utilization group
pushes events to the message queue of the target low utilization
cores, considering the calculated number of event migrations.
Figure 3 demonstrates this mechanism clearly.

V. EVALUATION

A. Evaluation Setup

We implemented OctoKV1 using SPDK v.21.10, with two
servers connected via 10 Gbps Ethernet. The client commu-
nicates with the storage server through NVMe-oF. Both the
client and storage servers have the same specifications, but
they differ in terms of CPU count and clock speed (refer to
Table III). In general, the CPU capability of storage servers
tends to be lower compared to that of hosts.

For the performance evaluation, we slightly modify the
RocksDB db bench benchmark to directly send NVMe com-
mand requests to OctoKV. The db bench is a multi-threaded
benchmark, which allows multiple threads to simultaneously
insert or retrieve key-value pair. Each thread executes 300K
put or get operations synchronously.

1https://github.com/lass-lab/octokv
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Fig. 4. Comparing the measurement of I/O latency performance for Put
workloads and the I/O response time breakdown for a value size of 16KB.

We defined three workloads based on the number of threads:
Light workload (7 threads), Medium workload (10 threads),
and Heavy workload (12 threads). We used “Fill Random”
and “Read Random” options for Put (write) and Get (read)
workloads, respectively. We used a key size of 4B and a value
size of 16KB as defaults. We measured I/O response time,
I/O latency time, throughput, and the utilization of individual
CPU. Note that the I/O latency is measured by the server,
whereas the I/O response time is measured from the client’s
perspective. Unless stated otherwise, the average mentioned
refers to the average of three runs. We compared the following
three systems:

• Host KVS: In order to assess the I/O performance impact
of OctoKV in a fair manner, we developed a host-side key-
value store that incorporates the same hash-based key-value
storage engine used in OctoKV. A detailed description of
the Host KVS is provided in the following section.

• OctoKV or OctoKV-LB: OctoKV is the proposed system
with only KV storage engine running on the storage server.
In contrast, OctoKV-LB is OctoKV with the load-aware
balanced I/O scheduling.

OKM collects the utilization of all cores every W , and W
is set to 1 second. It takes 180μs to collect once which is
negligible in terms of overhead.

B. Performance Evaluation

Figure 4 shows a comparison of the I/O response time
between Host KVS and OctoKV for the Put workload. For
a fair comparison on par with OctoKV, Host KVS invokes
the fsync() function each time it writes a key-value pair to
the DB file, ensuring durability. Furthermore, to minimize
the overhead caused by sharing DB files among I/O threads
in particular when fsync() is called, the Host KVS creates
multiple DB files, thereby ensuring minimal sharing of the
same DB file among the IO threads. Figure 4(a) shows the
response times according to the value size. As expected, the
I/O response time of the Host KVS is approximately 3 to 6.4
times higher than that of OctoKV. To analyze the difference
in I/O response times in more detail, we compared the time
breakdown for a value size of 16KB. From the result in
Figure 4(b), we found that the OS overhead accounts for
approximately 75% of the Host KVS’s I/O response time. On
the other hand, OctoKV completely eliminates such overhead,
leading to a significant reduction in I/O response time.

Figure 5 presents the results for the Get workload. In
contrast to the results for the Put workload, OctoKV exhibited

https://github.com/lass-lab/octokv
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approximately 1.2 to 1.4% higher response time on average
than the Host KVS, regardless of the value size (refer to
Figure 4(a)). The OS overhead in the Put workload contributes
significantly compared to the Get workload but network com-
munication overhead shows over 50% (refer to Figure 5(b)).

Additionally, OctoKV takes approximately 2.5 times longer
to execute the key-value storage engine compared to the Host
KVS (refer to KVS). This is because OctoKV has a lower
CPU clock speed than the KVS (refer to Table III). Due to this
reason, the overall I/O response time of the Host KVS is lower
than that of OctoKV. However, this experiment focuses on
measuring the performance of directly reading data from disk
without any caching effects on the host. Note that, systems
with host-side caching will show little performance difference.

Next, we measured the throughput and I/O response time
of Host KVS and OctoKV by increasing I/O loads from the
client. Figure 6(a) shows the results for the Put workload.
As expected, the Host KVS exhibits higher I/O response time
compared to OctoKV, and a lower maximum throughput than
OctoKV. This suggests that under heavy I/O load, the Host
KVS struggles to process incoming I/O requests, potentially
leading to overflow. On the other hand, OctoKV appears to be
more capable of handling such workloads. In Figure 6(b), the
results for the Get workload are presented. Both the Host KVS
and OctoKV demonstrate similar I/O response times as the
I/O load increases. However, the Host KVS exhibits a lower
throughput of approximately 200MB/s compared to OctoKV.

C. Load-aware Balanced I/O Scheduling

1) Effectiveness of Load-balancing Algorithm: Figure 7
provides a detailed analysis of the performance benefits
of load-balancing I/O scheduling using the PS heuristic
scheduling for medium and heavy workloads. Figure 7(a)
shows the performance for the “Fill Random” workload.
Figure 7(a) medium workload result shows that OctoKV-
LB outperforms OctoKV by 18% in terms of throughput.
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Fig. 7. Comparative analysis of throughput and I/O latency for medium and
heavy workloads with “Fill Random” and “Read Random” options. OctoKV-
LB used TOL=0.4, TLB=0.1, interval(W)=1, and a PS algorithm.

TABLE IV
PER-CORE EVENT COUNTS OF OCTOKV FOR (HEAVY, PUT).

Event C(1) C(2) C(3) C(4) C(5) C(6) Sum

NVMe-oF Target 26511 30412 10441 11844 11035 9757 100000
KV Store 26511 30412 10441 11844 11035 9757 100000
NVMe Driver 26511 30412 10441 11844 11035 9757 100000

Sum 31323 91236 79533 35532 33105 29271 300000

TABLE V
PER-CORE EVENT COUNTS OF OCTOKV-LB FOR (HEAVY, PUT).

event C(1) C(2) C(3) C(4) C(5) C(6) Sum

NVMe-oF Target 26394 30502 10394 11575 11583 9552 100000
KV Store 0 0 25024 25323 25231 24422 100000
NVMe Driver 0 0 25024 25323 25231 24422 100000

Sum 26394 30502 60442 62221 62045 58396 300000

Furthermore, OctoKV-LB exhibits 12% lower I/O latency than
OctoKV. Similarly, in Figure 7(a) heavy workload, OctoKV-
LB demonstrates 15% higher throughput than OctoKV. Addi-
tionally, OctoKV-LB shows 10% lower latency than OctoKV.
These results are consistent with those shown in Figure 6(a)
median workload, demonstrating the significant performance
gain achieved through load balancing.

Figure 7(b) shows the performance results for the “Read
Random” under the same conditions as the previous experi-
ment. As shown in Figure 7(b) medium workload, OctoKV-LB
exhibits 1% higher throughput than OctoKV. The latency for
OctoKV-LB is 1% lower than OctoKV. Similarly, in Figure
7(b), OctoKV-LB shows 1% higher throughput than OctoKV
in heavy workload. OctoKV-LB shows 1% lower latency
than OctoKV. Overall, the evaluation confirms that the load-
aware balanced I/O scheduling greatly impacts writes than read
workloads.

Table IV and Table V show the number of events processed
by each core for OctoKV and OctoKV-LB, respectively. We
considered each BDEV as a separate event. Threads are essen-
tially executed sequentially for NVMe-oF target BDEV, KV
store BDEV, and NVMe driver BDEV regarding I/O. However,
through message passing, some BDEV operations of I/O can
be handled by different cores. The original client requested
a total of 360,000 NVMe commands, but for convenience of
analysis, we only analyzed the number of processed events
for the 100,000 consecutive I/Os for every core. Also, note
that three events are generated for each NVMe command,
resulting in a total of 300,000 events across both tables. In our
experiment, the total of 100,000 I/O requests are transformed
into a total of 300,000 events. As shown in Table IV, Cores
#1&#2 process more NVMe command events than the other
cores, indicating an overload on Cores #1&#2. Therefore, as
shown in Table V, OctoKV-LB distributes the KV store and
NVMe driver events from Core #1&#2 to the other cores.



TABLE VI
COMPARISON OF SCHEDULING HEURISTICS.

Medium Workload Heavy Workload
Workload Latency (μs) Throughput (MB/s) Latency (us) Throughput (MB/s)

Fill RR 247 617 278 663
Random PS 244 630 274 680

Read RR 325 613 342 720
Random PS 325 615 342 724
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Fig. 8. Time series analysis of OctoKV-LB for medium and heavy workloads
with “Fill Random” using TOL=0.4, TLB=0.1, and a PS algorithm.

This way, OctoKV-LB resolves the core overloading problem
on Core #1&#2.

2) Comparative Analysis of Scheduling Heuristics: In the
previous experiments, we only showed the results for a PS
algorithm. Here, we compare the RR and PS scheduling
heuristics with OctoKV-LB. Table VI shows the results.
Overall, PS achieved slightly higher or equivalent throughput
compared to RR in all cases. As for I/O response time, PS
tends to be slightly lower than RR for Put workloads, while
the two are nearly identical for Get workloads. Therefore, it
can be inferred that the benefits of load balancing outweigh
the computational overhead incurred in scheduling decision-
making.

3) Time Series Analysis: Figure 8 presents the time series
results of OctoKV-LB’s core utilization for medium and heavy
workloads with the “Fill Random” option. The dotted line
in the figure (indicated at 15 seconds) represents the point
at which load-balancing I/O scheduling is triggered. In other
words, before the dotted line, load-balancing I/O scheduling
was not performed, and after the dotted line, it is performed.

Figure 8(a) is the results for medium workload. Before
the 15-second mark, there is a significant deviation in core
utilization between the high and low groups. Once the system
triggers load balancing after 15 seconds, I/O events (KV
store and NVMe driver) in the high group are redistributed
to the low group, resulting in a noticeable shift in core
utilization patterns. Specifically, we observe a decrease in core
utilization for the high group and a corresponding increase
in core utilization for the low group. This suggests that the
load balancing mechanism is effective in evenly distributing
the workload across both groups. And, as explained earlier,
NVMe-oF consumes a significant amount of CPU cycles, so
the core utilization of the high and low groups in Figure 8 does
not converge to the same value. When all events of the cores
in the high group are migrated, their core utilization decreases
by approximately 20% to the maximum.

Figure 8(b) shows the results for heavy workload. Notably,
we observe an overall increase in core utilization across all
cores compared to Figure 8(a). Additionally, similar to the
findings presented in Figure 8(a), our visual analysis suggests
that the load balancing mechanism operates efficiently between

cores following the 15-second mark.
4) Sensitivity Analysis: The effectiveness of load balanc-

ing in OctoKV-LB depends on the setting of the threshold
values (TOL, TLB). Therefore, we evaluated the throughput
of OctoKV-LB for heavy workload (Put) for various combi-
nations of threshold settings (TOL, TLB). The default setting
we have used so far is (0.4, 0.1). When we adjusted the
thresholds to (0.7, 0.4), there was no change in throughput.
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Fig. 9. The impact of (TOL,
TLB) settings on throughput.

In contrast, if we set TOL or
TLB to too high values, load bal-
ancing does not work properly.
Therefore, (0.9, 0.1) and (0.4,
0.6) showed a low throughput
because load balancing did not
work properly.

VI. CONCLUSION

In this paper, we proposed OctoKV, a network-based server-
side KV store that leverages the SPDK capabilities for
high performance in disaggregated storage. We identified and
showed experimentally significant load imbalance in SPDK-
based KVS. We proposed a robust load-aware balanced I/O
scheduling in OctoKV to cater the load imbalance problem.
The evaluation shows that OctoKV achieves lower I/O re-
sponse times in comparison to traditional approaches where
key-value stores run on the client side. Furthermore, the
proposed load balancing strategies effectively optimize I/O
response time by evenly distributing the load across the cores.
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