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Optimizing NVMe-Based Key-Value Interfaces 

• BandSlim: A Novel Bandwidth and Space-Efficient KV-SSD with an Escape-
from-Block Approach, ICPP, 2024

• ByteExpress: A High-Performance and Traffice-Efficient Inline Transfer of Small 
Payloads over NVMe, (under review)



Background



Big Data Era

• A rapid adoption of Artificial Intelligence (AI), High-Performance Com-
-puting (HPC), Data Analytics, and Cloud Service in these days.

• They handle “Big Data”.



What does Data look like?

• These Big Data applications do not merely handle Blocks; 
they manage variable-sized Key-Value Pairs or Objects.

Variable-sizedFixed-sized

* Picture from “Key Value SSD Explained – Concept, Device, System, and Standard” presented at SDC 2017 by S.-K.Yang,



Key-Value Store

• Therefore, these Big Data applications typically operate by 
employing Key-Value Stores (e.g., RocksDB, Cassandra).

* Picture from “Key Value SSD Explained – Concept, Device, System, and Standard” presented at SDC 2017 by S.-K.Yang,



Software Stack Issue

• Key-Value Stores run on top of file system & block layer, device 
driver and device controller.
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Software Stack Issue

• These layers are in place to follow the block interface, which 
originated from the hard disk drives.
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• These layers are in place to follow the block interface, which 
originated from the hard disk drives.



Software Stack Issue

• The problem is that these layers account for a significant portion 
of the total response time in Key-Value Stores [1].

[1] Lee, C. G., Kang, H., Park, D., Park, S., Kim, Y., Noh, J., Chung, W., & Park, K. (2019). iLSM-SSD: An Intelligent LSM-Tree Based Key-Value SSD for Data Analytics. In Proceedings of the

International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS). 



Key-Value Solid State Drive (KV-SSD)

• What about streamlining these layers from the storage stack?
• By making a key-value pair as the unit of data communication interface

• KV-SSDs have renovated the storage interface by changing the unit of I/O 
transactions from the traditional block to key-value.

key-value

block



Key-Value Solid State Drive (KV-SSD)

• What about streamlining these layers from the storage stack?
• By making a key-value pair as the unit of data communication interface

• KV-SSDs have renovated the storage interface by changing the unit of I/O 
transactions from the traditional block to key-value.

➔ lower latency & higher throughput
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Key-Value Solid State Drive (KV-SSD)

• KV-SSD supports key-value store operations like PUT and GET.

• KV-SSD maintains Key-to-Page mapping info by deploying index 
structures like Hash Table or LSM-tree.

* Picture from “Key Value SSD Explained – Concept, Device, System, and Standard” presented at SDC 2017 by S.-K.Yang,



NVMe Key-Value Command Set

• The NVMe protocol has introduced a key-value command set.

* Picture from “Key Value SSD Explained – Concept, Device, System, and Standard” presented at SDC 2017 by S.-K.Yang,



NVMe Key-Value Command Set

• The NVMe protocol has introduced a key-value command set.

• Most of commercially and academically released KV-SSDs have 
utilized the NVMe key-value command set to offer key-value interface.

SK hynix KV-CSD [2] Academia

[2] Park, I., Zheng, Q., Manno, D., Yang, S., Lee, J., Bonnie, D., Settlemyer, B., Kim, Y., Chung, W., & Grider, G. (2023). KV-CSD: A Hardware-Accelerated Key-Value Store for Data-Intensive 

Applications. In Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER), 132–144.



NVMe Key-Value Write Mechanism

• In a case of NVMe KV-SSD based on the LSM-tree with a key-value 
separation (e.g., iLSM-SSD, KV-CSD), when writing key-value pairs, ...



NVMe Key-Value Write Mechanism

• The NVMe driver stores a key and metadata in the NVMe command, 
and then submits the command to the SQ and rings the doorbell.



NVMe Key-Value Write Mechanism

• The NVMe controller issues a DMA transaction to copy the payload 
(value) to the NAND page buffer within the device’s DRAM.



NVMe Key-Value Write Mechanism

• The controller constructs the LSM-tree entry containing the key, value 
size, and value pointer, and programs the NAND page buffer entry.

(to show the flow clearly, it programs the NAND 
page buffer entry even though it’s not full)



Motivation



Problem Definition

• According to Meta, their popular LSM KVS, RocksDB, in a production 
environment experiences the size of values nearly not reaching a 
hundred bytes on average [3], which is far less than the 4 KiB 
memory page size.

[3] Cao, Z., Dong, S., Vemuri, S., & Du, D. H. C. (2020). Characterizing, modeling, and benchmarking RocksDB key-value workloads at Facebook. In Proceedings of the 18th USENIX Conference 
on File and Storage Technologies (FAST ’20) (pp. 1-14). Santa Clara, CA, USA.

Figure – Value Size CDF for RocksDB as a MySQL storage layer (left) and RocksDB as a distributed KVS 
(right)



Problem Definition

• The problem occurs with the fact that the NVMe key-value interface 
still cannot extricate itself from the deeply entrenched block-interface-
assumed storage mechanisms and frameworks.

➔ is it really a `key-value` interface?

key-value



PCIe Traffic and Transfer Latency Bloating

• The NVMe’s payload transfer method, PRP, restricts DMA transfers to 
occur in units of 4 KiB, a size of memory page.

• This leads to the bloated PCIe traffic and latency during value transfers, 
especially for variable-sized, small values.



PCIe Traffic and Transfer Latency Bloating

• The NVMe’s payload transfer method, PRP, restricts DMA transfers to 
occur in units of 4 KiB, a size of memory page.

• This leads to the bloated PCIe traffic and latency during value transfers, 
especially for variable-sized, small values.

Setup IterKVSSD (Systor ’23) on Cosmos+ OpenSSD platform
- feature: SOTA LSM-based KV-SSD        - PCIe Gen2 x8 lane
- 1GB of DRAM, 1TB of NAND (Toshiba), Xilinx zynq-7000

Workload fillsequential of RocksDB’s db_bench
- number of PUTs: 1 million unique KV pairs       - key size: 4 B※ Traffic Amplification = (value size) / (PCIe traffic)



Limitation of Other Methods – NVMe SGL

• NVMe’s another payload transfer mechanism, Scatter-Gather List 
(SGL), can support multiple variable-sized DMAs across scattered 
memory segments. 



Limitation of Other Methods – NVMe SGL

• However, it has been reported that the cost of enabling the SGL 
outweighs the benefit for I/O smaller than 32 KiB [4]. 

• The Linux kernel thus establishes a minimum threshold for data transferred via SGL at 32 KiB 
[5], indicating that using SGL for small value transfers is not advisable.

[4] 2017. nvme : add Scatter-Gather List (SGL) support in NVMe driver. https://lore.kernel.org/all/04aaed5c-1a8a-f601-6c9c-88bf1cf66e8a@mellanox.com/T/
[5] The Linux Kernel source code. sgl_threshold. https://github.com/torvalds/linux/blob/master/drivers/nvme/host/pci.c



Limitation of Other Methods – Host Batching

• KV-CSD and Dotori [6] have tackled this issue by implementing bulk 
PUT operation, which is host-side batching.

• However, a fundamental issue with buffering the key-value entries on the host 
side is the risk of data loss on power failure.

[6] Duffy, C., Shim, J., Kim, S.-H., & Kim, J.-S. (2023). Dotori: A Key-Value SSD Based KV Store. Proceedings of the VLDB Endowment, 16(6), 1560–1572. 

not suitable for 
mission-critical
scenarios



Limitation of Other Methods – PCIe MMIO

• PCIe MMIO-based transfer enables low-latency data exchange by 
letting hosts write small payloads directly into SSD memory via the 
BAR space.

• Solutions like 2B-SSD [7]
and ByteFS [8] use cache-
line-level writes to bypass 
traditional block I/O paths.

[7] D. -H. Bae et al., "2B-SSD: The Case for Dual, Byte- and Block-Addressable Solid-State Drives," 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA).

[8] S. Li et al., “ByteFS: System Support for (CXL-based) Memory-Semantic Solid-State Drives”. 2025 30th ACM International Conference on Architectural Support for Programming Languages 
and Operating Systems (ASPLOS '25).



Limitation of Other Methods – PCIe MMIO

• However, integrating this into existing NVMe devices is difficult due to 
the need for     extra buffer memory,     transactional coordination, and  

new host interfaces.
• Significant modifications

to SSD architectures and
firmware logic.

• Existing user-level APIs
cannot be reused.

[7] D. -H. Bae et al., "2B-SSD: The Case for Dual, Byte- and Block-Addressable Solid-State Drives," 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA).

[8] S. Li et al., “ByteFS: System Support for (CXL-based) Memory-Semantic Solid-State Drives”. 2025 30th ACM International Conference on Architectural Support for Programming Languages 
and Operating Systems (ASPLOS '25).
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Proposed Solutions

BandSlim & ByteExpress



Solutions: BandSlim & ByteExpress

• To tackle the PCIe traffic amplification and latency bloating problem 
occurring in small key-value transfer under the NVMe key-value 
transaction, we introduce BandSlim1 and ByteExpress2.

NVMe-Based Fine-Grained Payload Transfer Method

BandSlim ByteExpress

1 BandSlim: A Novel Bandwidth and Space-Efficient KV-SSD with an Escape-from-Block Approach, ICPP, 2024
2 ByteExpress: A High-Performance and Traffic-Efficient Inline Transfer of Small Payloads over NVMe, (under review)
* ByteExpress is a proposed technique from a recently submitted research paper, currently under review, and serves as an improved version of BandSlim.



BandSlim’s Fine-Grained Payload Transfer

• BandSlim employs a fine-grained inline value transfer mechanism 
that piggybacks values smaller than a memory page size to NVMe 
commands using the reserved fields (gray-colored in Figure (a)&(b)).
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• BandSlim employs a fine-grained inline value transfer mechanism 
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Figure – Value Size CDF for RocksDB in a 
production environment



BandSlim’s Fine-Grained Payload Transfer

• BandSlim employs a fine-grained inline value transfer mechanism 
that piggybacks values smaller than a memory page size to NVMe
commands using the reserved fields (gray-colored in Figure (a)&(b)).

Figure – Value Size CDF for RocksDB in a 
production environment

64 B NVMe command 
gives an opportunity



Adaptive Value Transfer Optimization

• When transmitting large values, generating and sending multiple 
NVMe commands in this manner can result in longer response times.

• Thus, BandSlim also incorporates an adaptive value transfer strategy that 
switches back and forth piggybacking and page-unit DMA.



Adaptive Value Transfer Optimization

• When transmitting large values, generating and sending multiple 
NVMe commands in this manner can result in longer response times.

• Thus, BandSlim also incorporates an adaptive value transfer strategy that 
switches back and forth piggybacking and page-unit DMA.

Large Value



Adaptive Value Transfer Optimization

• When transmitting large values, generating and sending multiple 
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Adaptive Value Transfer Optimization

• When transmitting large values, generating and sending multiple 
NVMe commands in this manner can result in longer response times.

• Thus, BandSlim also incorporates an adaptive value transfer strategy that 
switches back and forth piggybacking and page-unit DMA.

Small 
Value Large Value



Evaluation Setup

• Testbed: KV-SSD on

Cosmos+

OpenSSD

Platform



Evaluation Setup

• Test Configurations:

Baseline
(NVMe PRP)

State-of-the-art LSM-based NVMe KV-SSD, IterKVSSD (Systor ’23).

Piggyback
(BandSlim)

It transfers values using only piggybacking-based transfer method.

Adaptive It transfers values using the adaptive value transfer method.



Evaluation Setup

• Workloads (Meta’s db_bench):

Baseline State-of-the-art LSM-based NVMe KV-SSD, IterKVSSD (Systor ’23).

Piggyback It transfers values using only piggybacking-based transfer method.

Adaptive It transfers values using the adaptive value transfer method.

W(B) fillrandom, 1 million PUTs, value sizes of 8 B or 2 KiB at a 9:1 ratio.

W(C) Same as W(B) but with the value size ratio reversed to 1:9.

W(D)
fillrandom, 1 million PUTs, values sizes of 8 B, 16 B, 32 B, 64 B, 128 B, 
256 B, 512 B, 1 KiB, and 2 KiB with each size having an equal ratio. 

W(M)
mixgraph (real-world workloads with a maximum value size of 1 KiB 
and almost 70% of values being under 35 B), 1 million PUTs.



Evaluation Setup

• Workloads (Meta’s db_bench):

Baseline State-of-the-art LSM-based NVMe KV-SSD, IterKVSSD (Systor ’23).

Piggyback It transfers values using only piggybacking-based transfer method.

Adaptive It transfers values using the adaptive value transfer method.

W(B) ➔ Small Value Dominant   (8B:2KB = 9:1)

W(C) ➔ Large Value Dominant   (8B:2KB = 1:9)

W(D) ➔ Balanced Value Size   (8B ~ 2KB)

W(M) ➔ Real-World Pattern   (mostly around 64B)



Fine-Grained Value Transfer

• Piggyback (BandSlim) significantly reduced total PCIe traffic across all workloads 
and improved the average throughput compared to Baseline (NVMe PRP) for 
W(M), which reflects real-world value size characteristics of RocksDB.

Figure 2. Performance analysis of  transfer methods.

(a) Avg. Throughput                              (b) Total PCIe Traffic

Various Workloads (W(B) ~ W(M)) 
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• Piggyback (BandSlim) significantly reduced total PCIe traffic across all workloads 
and improved the average throughput compared to Baseline (NVMe PRP) for 
W(M), which reflects real-world value size characteristics of RocksDB.

Figure 2. Performance analysis of  transfer methods.

(a) Avg. Throughput                              (b) Total PCIe Traffic

Fine-Grained Value Transfer
Various Workloads (W(B) ~ W(M)) 

The proposed approach performs better than the baseline under 
real-world workloads while reducing PCIe traffic significantly.
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• However, Piggyback (BandSlim) suffered significant performance degradation for 
W(B), W(C), and W(D) since its serialized NVMe command generation and 
processing for transferring larger values (64B~).

• Above all, Adaptive proves to be the best in all workloads. 
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Fine-Grained Value Transfer
Various Workloads (W(B) ~ W(M)) 

• However, Piggyback (BandSlim) suffered significant performance degradation for 
W(B), W(C), and W(D) since its serialized NVMe command generation and 
processing for transferring larger values (64B~).

• Above all, Adaptive proves to be the best in all workloads. 

If we cover tiny values by piggybacking, and large values by fast 
PRP DMA, we can achieve an optimal transfer performance.



Figure 2. Performance analysis of  transfer methods.

(a) Avg. Throughput                              (b) Total PCIe Traffic

Fine-Grained Value Transfer
Various Workloads (W(B) ~ W(M)) 

• However, Piggyback (BandSlim) suffered significant performance degradation for 
W(B), W(C), and W(D) since its serialized NVMe command generation and 
processing for transferring larger values (64B~).

• Above all, Adaptive proves to be the best in all workloads. 
But BandSlim clearly has a limitation of suffering performance 
degradation for moderately large payloads (e.g., 64B ~ 256B) 

which are also common in other real-world deployments 
( Twitter reported their average KV  pair size is around 100B [9] )

[9] W. Daelemans et al., “Overview of PAN 2019: Bots and Gender Profiling, Celebrity Profiling, Cross-Domain Authorship Attribution and Style Change Detection”. In Experimental IR Meets 
Multilinguality, Multi- modality, and Interaction. Proceedings of the 10th International Conference of the CLEF Association (CLEF 2019)



ByteExpress’s Fine-Grained Payload Transfer

• The previous approach embeds payloads (values) in custom NVMe 
commands and achieves a fine-grained payload transfer. 

• However, it loses scalability for moderately 
larger payloads due to repeated NVMe 
command generation and processing 
caused by its mandatory serialization 
for data integrity of payloads.



ByteExpress’s Fine-Grained Payload Transfer

• ByteExpress introduces a new method to transmit small payloads 
without modifying the NVMe interface or SSD architecture.

• It appends 64-byte payload chunks directly 
after the command in the Submission Queue, 
avoiding PRP-based DMA inefficiencies and
serialized command processing overheads.

• The technical details are skipped 
since it’s now under review.
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ByteExpress’s Fine-Grained Payload Transfer

• ByteExpress introduces a new method to transmit small payloads 
without modifying the NVMe interface or SSD architecture.

• It appends 64-byte payload chunks directly 
after the command in the Submission Queue, 
avoiding PRP-based DMA inefficiencies and
serialized command processing overheads.

• The technical details are skipped 
since it’s now under review.

* Workload: FillRandom with fixed sized payloads (32B to 4KB)

72% 

With ByteExpress’s NVMe SQ-Based Fine-Grained Transfer, we can 
efficiently cover not just tiny values but also moderately larger 
values (64B ~ 256B) which are frequent in real-world scenarios



Conclusion



Conclusion

We introduce BandSlim and ByteExpress to address inefficiencies of 
traditional block-interfaced storage protocols (e.g., NVMe) for small 
payload transfers, especially in a domain of Key-Value SSDs. 

The mismatch leads to excessive traffic on the PCIe interconnect and 
increased transfer latency, significantly degrading performance. 

Our proposed solutions reduce PCIe traffic greatly and improve 
performance as well for small payloads-dominant scenarios.



Leveraging KVSSDs to Overcome Performance 

Hurdles in Key-Value Stores

• KVAccel: A Novel Write Accelerator for LSM-Tree-Based KV Stores with Host-
SSD Collaboration, IPDPS, June 2025 (To Appear)



Background



LSM-Tree-Based Key-Value Stores

• LSM KVS (ex. RocksDB) stores data in an append-only manner in 
the active MemTable

• Data in MemTable is moved to and managed on disk through 
background jobs (Flush, Compaction)



Write Stall Problem

• Write Stall: write operation blocked, due to bottlenecks in Flush, 
Compaction

• In RocksDB, write stall occurs under these 3 scenarios

1) Incoming Writes > Flush

2) Flush > Level 0 to Level 1 Compaction

3) Pending deep level compaction size becomes heavier



Motivation
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Motivation

PCIe

Block Layer

File System

RocksDB

NVMe SSD

User’s Put Queries

Compaction

I/O Blocking

SSD Busy????



● RocksDB uses the slowdown method to prevent user writes from 

becoming completely blocked.

● The state-of-the-art solution ADOC[2] also uses slowdowns. 

→ Both RocksDB and ADOC[2] ultimately fall back to using 

slowdown to avoid a write stall.

Slowdowns[1]: Inefficient Write Stall Solution
Observation #1

[1]:https://github.com/facebook/rocksdb/wiki/Write-Stalls
[2]: ADOC: Automatically Harmonizing Dataflow Between Components in Log-Structured Key-Value Stores for Improved Performance, Jinghuan Yu et al. (USENIX FAST’23)



● Slowdowns, while preventing a complete write stall from occurring, harms 
overall performance. 

I/O service is 
uninterrupted 

thanks to 
slowdowns 

preventing write 
stalls...

…At the cost of 
overall 

throughput and 
latency.

Slowdowns[1]: Inefficient Write Stall Solution
Observation #1

Both state of the art and industry standard solutions make use of 
write slowdowns to prevent write stalls, which cause a sharp drop 

in overall throughput and tail latency.



● PCIe Traffic drop sharply during a write stall, implying inefficient device 
resource usage.
○ RocksDB is shown to leave up to 90% of available PCIe bandwidth around 

50% of the time during a write stall.

Under-utilization of PCIe Bandwidth
Observation #2

PCIe bandwidth is under-utilized during write stalls in industry 
standard LSM-KVS due to the compaction operation 

blocking device I/O.



The status quo

• Observation 1. ultimately leads to the following options for write stalls.

• Observation 2. reveals an unexploited resource to help mitigate write 

stalls and increase performance without sacrificing system resources: 

underutilized PCIe and device bandwidth during write stalls.

Allowing Write Stalls

● Overall throughput and latency 

conserved

● Complete interrupts in I/O 

service as write stalls are 

allowed to occur.

Slowdowns

● Maintains I/O service at all 

times

● Overall throughput and latency 

penalty due to said slowdowns

Can write stalls be mitigated without sacrificing system resources 
by leveraging underutilized PCIe and device bandwidth 

during write stalls?



Utilizing Key-Value Interface of KV-SSD ?

• We can leverage the available bandwidth and processing capacity of 
SSD during write stalls in LSM-KVSs by temporarily redirecting 
pending write requests through the key-value interface.



Proposed Solution: KVAccel



Proposed Solution: KVAccel

• KVAccel ’s design is based on two key factors:
➔ Disaggregation and Aggregation.

Disaggregation

● Division of SSD into hybrid 

interface (block and key-value) 

and its required I/O paths

● Maintenance of each interface’s 

separate LSM-Tree

Aggregation

● Manage data from each interface 

as if it was one database instance

● Unify separate I/O commands and 

database state with rollback



Overview of KVAccel

● Main-LSM
○ Block interface’s LSM-Tree 
○ Main-LSM I/O path taken when 

no write stalls are present.

● Dev-LSM
○ Key-value interface’s LSM-Tree
○ Dev-LSM I/O path taken a write 

stall is occuring.

● Co-design of hardware & software provides two I/O paths 
● Different I/O paths taken based on the presence of a write stall



Hardware – Hybrid Dual-Interface SSD

● Hybrid interface SSD achieved by logical NAND flash address
disaggregation via a specified address boundary.
○ Each interface is unaware of the division ➔ no risk of overlapping logical NAND pages.

○ SSD issues different commands for each interface based on the given NVMe opcode.



Software – Detector & Controller

● Detector
○ Detects write stalls checking 3 

components
■ # of Level 0 SSTs 
■ MemTable size
■ Pending compaction size

● Controller
○ Directs I/O commands to the 

correct interface based on the 
Detector’s output.



Software – Metadata & Rollback Manager

● Metadata Manager
○ Keeps track of KV pairs located 

in Dev-LSM via a hash table for 
membership testing 

● Rollback Manager
○ Initiates and performs the 

rollback operation based on 
the rollback scheduling policy 
and the Detector’s output.



Rollback Operation: Scheduling

● Rollback refers to return the KV pairs in Dev-LSM back to Main-LSM 
into one LSM-KVS instance.

● Rollback operation can be scheduled eagerly or lazily based on 

workload characteristics.

Lazy Rollback

● Delay rollback until the current 

write workload is completely 

finished

● Ideal for a write intensive 

workload to lower interference of 

rollback with write operations

Eager Rollback

● Perform rollback as soon as there 

are enough resources available 

(by using L0 file count threshold)

● Ideal for a read orientated 

workload to avoid slow Dev-LSM 

read operations



Rollback Operation: Range Scan

● To accelerate rollback, KV pairs are read in bulk using a range scan 
operation.
● Iterator reads Dev-LSM in its entirety and serializes the KV pairs.

● KV pairs are then sent to the host by performing DMA multiple times.



Evaluation



Evaluation Setup

• Testbed: KV-SSD on

Cosmos+

OpenSSD 

Platform



LSM-KVS and Benchmark Configurations



● Throughput minimum values greatly increased, as KVAccel is 
designed to allow as much throughput as the SSD and system allows 

without slowdowns.

Write Stall Avoidance



(a) Throughput           (b) P99 Latency           (c) Efficiency

Performance Evaluation



(a) Throughput
● KVAccel shows at most a 37% and 17% improvement over than 

RocksDB and ADOC, respectively.
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(b) P99 Latency
● Maximum of 42% and 20% decrease in latency was also observed 

between KVAccel and RocksDB, ADOC, respectively.
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Performance Evaluation



(c) Efficiency = Avg. Throughput(MB/s) / Avg. CPU usage(%)
● KVAccel maintains the better efficiencies in host machine’s resources 

between all LSM-KVS compared, with KVAccel(1) shows the best 

efficiency over all configurations.

Performance Evaluation



Eager vs Lazy Rollback analysis
● (b) and (c) present a read-write mix workload, where both rollback 

schemes achieve similar write throughput, both holding a lead of 36% 

and 51% over ADOC respectively.

Rollback Policies Evaluation



● More available PCIe traffic exploited
● KVAccel takes advantage of its dual interface and demonstrate higher PCIe 

utilization over RocksDB.

PCIe Traffic Usage



Conclusion



● Current research on mitigating write stalls fall short in completely 
eliminating write stalls, while failing to incorporate both hardware and 

software holistically in their design.

● KVAccel demonstrates the effectiveness of hardware-software co-

design for write stall mitigation by exploiting underutilized PCIe 
bandwidth and computational power of SSDs during compaction.

Conclusion



Thank You
Q&A

Presenter: Youngjae Kim

Contact: youkim@sogang.ac.kr

mailto:junttang@sogang.ac.kr
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