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Optimizing NVMe-Based Key-Value Interfaces

* BandSlim: A Novel Bandwidth and Space-Efficient KV-SSD with an Escape-
from-Block Approach, ICPP, 2024

e ByteExpress: A High-Performance and Traffice-Efficient Inline Transfer of Small
Payloads over NVMe, (under review)
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Big Data Era A

A rapid adoption of Artificial Intelligence (Al), High-Performance Com-
-puting (HPC), Data Analytics, and Cloud Service in these days.

* They handle “Big Data”.
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What does Data look like?

* These Big Data applications do not merely handle Blocks;
they manage variable-sized Key-Value Pairs or Objects.
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* Picture from “Key Value SSD Explained — Concept, Device, System, and Standard” presented at SDC 2017 by S.-K.Yang,



)’

Key-Value Store

* Therefore, these Big Data applications typically operate by
employing Key-Value Stores (e.g., RocksDB, Cassandra).
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* Picture from “Key Value SSD Explained — Concept, Device, System, and Standard” presented at SDC 2017 by S.-K.Yang,



Software Stack Issue

« Key-Value Stores run on top of file system & block layer, device

|

driver and device controller.
£ . @
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Software Stack Issue N

« Key-Value Stores run on top of file system & block layer, device
driver and device controller.
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Do we really need these layers?
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Software Stack Issue

* These layers are in place to follow the block interface, which
originated from the hard disk drives.

[ File System ]
[ Block Layer ]
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Software Stack Issue N

* These layers are in place to follow the block interface, which
originated from the hard disk drives.

[ File System ]
[ Block Layer ]
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Software Stack Issue N

* The problem is that these layers account for a significant portion
of the total response time in Key-Value Stores [1].

@ User library — write syscall
@Emm fdatasync syscall Block level I/0

Average Latency (usec)
I
S

@ ﬁ

RocksDB NVMe SSD

[1] Lee, C. G., Kang, H., Park, D., Park, S., Kim, Y., Noh, J., Chung, W., & Park, K. (2019). iLSM-SSD: An Intelligent LSM-Tree Based Key-Value SSD for Data Analytics. In Proceedings of the
International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS).



Key-Value Solid State Drive (KV-SSD)

* What about streamlining these layers from the storage stack?
* By making a key-value pair as the unit of data communication interface

« KV-SSDs have renovated the storage interface by changing the unit of I/O
transactions from the traditional block to key-value.

Host NVMe SSD
|
KVS Key-Value Host-side File Block NVMe NVMe
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l
Host Key-Value SSD
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Key-Value Solid State Drive (KV-SSD)

* What about streamlining these layers from the storage stack?
* By making a key-value pair as the unit of data communication interface

« KV-SSDs have renovated the storage interface by changing the unit of I/O
transactions from the traditional block to key-value.

Host NVMe SSD
|
KVS Key-Value Host-side File Block NVMe NVMe
API (GEAEIIERS G | System | | Layer Driver Controller
l
Host Key-Value SSD

Key-Val
KV'SSD [ eyAP? ue]

NVMe In-device
Controller | G AEIFERS 6]

=>» lower latency & higher throughput
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Key-Value Solid State Drive (KV-SSD) A

« KV-SSD supports key-value store operations like PUT and GET.

« KV-SSD maintains Key-to-Page mapping info by deploying index
structures like Hash Table or LSM-tree.
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* Picture from “Key Value SSD Explained — Concept, Device, System, and Standard” presented at SDC 2017 by S.-K.Yang,




NVMe Key-Value Command Set E‘,

 The NVMe protocol has introduced a key-value command set.

New Key Value [ PUT J [ GET ] [DELETE] [ EXISTS ]
Commands

Existing Command Admin |dentify commands Other non-block
Extension command for KV specific commands

* Picture from “Key Value SSD Explained — Concept, Device, System, and Standard” presented at SDC 2017 by S.-K.Yang,
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NVMe Key-Value Command Set @

 The NVMe protocol has introduced a key-value command set.

* Most of commercially and academically released KV-SSDs have
utilized the NVMe key-value command set to offer key-value interface.
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[2] Park, 1., Zheng, Q., Manno, D., Yang, S., Lee, J., Bonnie, D., Settlemyer, B., Kim, Y., Chung, W., & Grider, G. (2023). KV-CSD: A Hardware-Accelerated Key-Value Store for Data-Intensive
Applications. In Proceedings of the IEEE Intemational Conference on Cluster Computing (CLUSTER), 132—-144.
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NVMe Key-Value Write Mechanism ?;

 [n a case of NVMe KV-SSD based on the LSM-tree with a key-value
separation (e.g., ILSM-SSD, KV-CSD), when writing key-value pairs, ...

PUT{(key,value)
2 alue|

NVMe Driver
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NVMe Key-Value Write Mechanism @

 The NVMe driver stores a key and metadata in the NVMe command,
and then submits the command to the SQ and rings the doorbell.

PUT(key,value)
2 valve NVMe Command
NVMe Driver commandID

Host DRAM ——— 1 __ opcode | ...

> key o
PRPlist

PCle valueSize
NVMe Controller NAND Page Buffer Entry

SSD DRAM I

NAND Flash

/\ NAND Page
LSM-Tree — —




NVMe Key-Value Write Mechanism

 The NVMe controller issues a DMA transaction to copy the payload

(value) to the NAND page buffer within the device’s DRAM.

PUT(key,value)
Mem Page
2% value NVMe Command 4KB
NVMe Driver commandID -
Host DRAM 1 opcode | el |
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NVMe Key-Value Write Mechanism @

* The controller constructs the LSM-tree entry containing the key, value
size, and value pointer, and programs the NAND page buffer entry.

(to show the flow clearly, it programs the NAND
page buffer entry even though it’s not full)

PUT(key,value) Mem Page
= value NVMe Command 4KB
NVMe Driver commandID

Host DRAM —— 1 __ opcode

> key :

PRPlist ~ pauei :

PCle valueSize
______________________________ .. e

NVMe Controller
LSM-Tree Entry
key| valueSize | valueAddr d

LSM-Tree
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Problem Definition g

« According to Meta, their popular LSM KVS, RocksDB, in a production
environment experiences the size of values nearly not reaching a
hundred bytes on average [3], which is far less than the 4 KiB
memory page size.

1 1 -
0.8 “ﬂ . Object —— 0.8
0.6 . Object 2ry —e— | 0.6
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0.4 Assoc 2ry —+— | 0.4
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0 * Y ‘Non_SG — 0 | | Value size —

10° 100 102 10> 10* 10° 10° 10° 100 102 10° 10" 100 10°
Value size (bytes) Value size (bytes)
Figure — Value Size CDF for RocksDB as a MySQ(L.st}cl)r)age layer (left) and RocksDB as a distributed KVS
right

[3] Cao, Z., Dong, S., Vemuri, S., &Du, D. H. C. (2020). Characternizing, modeling, and benchmarking RocksDB key-value workloads at Facebook. In Proceedings of the 18th USENIX Conference
on File and Storage Technologies (FAST "20) (pp. 1-14). Santa Clara, CA, USA.



Problem Definition g

* The problem occurs with the fact that the NVMe key-value interface
still cannot extricate itself from the deeply entrenched block-interface-
assumed storage mechanisms and frameworks.

Host Key-Value SSD

Key-Value| | NVMe NVMe In-device
KV-SSD [ API ] Driver Controller | BiG AL NERS )=

=>» is it really a "key-value interface?




PCle Traffic and Transfer Latency Bloating @

 The NVMe’'s payload transfer method, PRP, restricts DMA transfers to
occur in units of 4 KiB, a size of memory page.

* This leads to the bloated PCle traffic and latency during value transfers,
especially for variable-sized, small values.

Host DRAM
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PCle Traffic and Transfer Latency Bloating @

 The NVMe’'s payload transfer method, PRP, restricts DMA transfers to
occur in units of 4 KiB, a size of memory page.

 This leads to the bloated PCle traffic and latency during value transfers,
especially for variable-sized, small values.

Host DRAM
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Limitation of Other Methods — NVMe SGL &

* NVMe’s another payload transfer mechanism, Scatter-Gather List
(SGL), can support multiple variable-sized DMAs across scattered
memory segments.

SGL List SGL Descriptor
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T ] ] L 3 F 1
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in S0 Entry {_ |__s6L Descrptor _ | L ]
SGL Descriptor |
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SGL Segment < _ Specific —
SGL Descriptor ype Spect
SGL Descriptor
SGL Descnptor = SGL Last Segment Descrptor L _
SGL Descriptor L —
Last | SGL Descriptor | _ _ 15 SGL Dege. Typs | Diege Type Spacific
L SGL Descriplor




Limitation of Other Methods — NVMe SGL &

* However, it has been reported that the cost of enabling the SGL
outweighs the benefit for I/O smaller than 32 KiB [4].

« The Linux kernel thus establishes a minimum threshold for data transferred via SGL at 32 KiB
[5], indicating that using SGL for small value transfers is not advisable.

sgl_threshold = SZ_32K;

60 static unsigned int

61 module_param(sgl_thFesnold, t y o S

62 MODULE_PARM_DESC(sgl_threshold,

63 "Use SGLs when average request segment size 1s larger or equal to "
64 "this size. Use @ to disable SGLs.");

66 #define NVME_PCI_MIN_QUEUE SIZE 2
67 #define NVME PCI_MAX_QUEUE SIZE 4095
68 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);

69 static const struct kernel param ops 10 queue depth ops = {

70 .set = io_queue_depth_set,
71 .get param_get uint,
72 };

[4] 2017. nvme : add Scatter-Gather List (SGL) support in NVMe driver. https://lore.kernel.org/all/04aaed5c-1a8a-f601-6¢9c-88bf1cf66e8a@mellanox.com/T/
[5] The Linux Kemel source code. sgl_threshold. https://github.com/torvalds/linux/blob/master/drivers/nvme/host/pci.c
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Limitation of Other Methods — Host Batching E‘,

« KV-CSD and Dotori [6] have tackled this issue by implementing bulk
PUT operation, which is host-side batching.

« However, a fundamental issue with buffering the key-value entries on the host
side is the risk of data loss on power failure.

i Regular PUT R f K """"""""" ‘u’l ____________________ ~ )
_ . ey alue
Key | Value | ; :
N — A
( Bulk PUT ) i KLDG e ———— th S_Uitab|_e_f0r
: | ®@Fush mission-critical
Key Value ———— scenarios
e O (NRSRNTT ]
| Key | Value | ; KLDG Zune Clusters ULDG Zune Clusters
— \ J

[6] Duffy, C., Shim, J., Kim, S.-H., & Kim, J.-S. (2023). Dotori: A Key-Value SSD Based KV Store. Proceedings of the VLDB Endowment, 16(6), 1560-1572.



Limitation of Other Methods — PCle MMIO /&

« PCle MMIO-based transfer enables low-latency data exchange by
letting hosts write small payloads directly into SSD memory via the

BAR Space o _ NvMe CMD Byte I/F Write
. Solutions like 2B-SSD [7] B nﬂ)ryPage *-Dai[Byte I/F‘Driver}-------g ...... -Payload
and ByteFS [8] use cache-  |Hostbram OEIDE ~Payload HostDRAM | 82 o
line-level writes to bypass * - e‘FZl
traditional block I/O paths. ° e I
C""””“’””'Byte G Controller]

WS | 0| Byte I/F Buffer

merge
later SSD DRAM

NAND Flash 1/0 NAND Flash I
(a) NVMe PRP-Based (b) PCle MMIO-Based

[7] D. -H. Bae et al., "2B-SSD: The Case for Dual, Byte- and Block-Addressable Solid-State Drives," 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA).

[8] S. Li et al., “ByteFS: System Support for (CXL-based) Memory-Semantic Solid-State Drives”. 2025 30th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS '25).



|
Limitation of Other Methods — PCle MMIO /&

« However, integrating this into existing NVMe devices is difficult due to
the need for @ extra buffer memory, @ transactional coordination, and

€) new host interfaces. e —
o MemoryPage 9 [ Byte I/F Driver}

« Significant modifications —>{NVMe Driver o2
. \ @
to SSD architectures and Host P.RAM.?!JIDE “Payioad Host DRAM _ ¥ rcze muro
firmware logic. 9‘; .
- Existing user-level APIs pae |0 o g
cannot be reused. et o O
o

Data Buffer 9
—
Block I/F Buffer Log | Byte I/F Buffer

o | —— P Y
¥ . 14

NAND Flash 1l 1/0 NAND Flash
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SSD DRAM

[71D. -H. Bae et al., "2B-SSD: The Case for Dual, Byte- and Block-Addressable Solid-State Drives," 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA).

[8] S. Li et al., “ByteFS: System Support for (CXL-based) Memory-Semantic Solid-State Drives”. 2025 30th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS '25).



Proposed Solutions

BandSIlim & ByteExpress
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I
Solutions: BandSlim & ByteExpress

* To tackle the PCle traffic amplification and latency bloating problem
occurring in small key-value transfer under the NVMe key-value
transaction, we introduce BandSlim? and ByteExpress?.

NVMe-Based Fine-Grained Payload Transfer Method

BandSIlim ByteExpress

1BandSlim: A Novel Bandwidth and Space-Efficient KV-SSD with an Escape-from-Block Approach, ICPP, 2024

2 ByteExpress: A High-Performance and Traffic-Efficient Inline Transfer of Small Payloads over NVMe, (under review)
* ByteExpress is a proposed technique from a recently submitted research paper, currently under review, and serves as an improved version of BandSlim.
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BandSlim’'s Fine-Grained Payload Transfer g
* BandSIlim employs a fine-grained inline value transfer mechanism

that piggybacks values smaller than a memory page size to NVMe
commands USing the reserved fields (gray-colored in Figure (a)&(b)).

dword | description dword | description
dword0 commandID |P F | opcode dword0 commandID |P F| opcode
dword1 namespacelD dword1 namespacelD
dword2 e K
dword3 Y e
metadataPointer (PRP) metadataPointer (PRP)
dword6 ] dwordb6 ]
dword? PRPlistEntry1 dword? PRPIlistEntry1
PRPlistEntry2 PRPlistEntry2
valueSize valueSize
reserved oejijeli| keySize reserved option keySize
dwordi3 reserved dwordi3 reserved
dword14 dword14
dword15 key dword15 -

(a) Write Command (b) Transfer Command



BandSlim's Fine-Grained Payload Transfer

« BandSIlim employs a fine-grained inline value transfer mechanism
that piggybacks values smaller than a memory page size to NVMe
commands USing the reserved fields (gray-colored in Figure (a)&(b)).

dword | description
dword0 commandID _|P F| opcode
dword1l namespacelD
dword2
key

dword3

dword6

metadataPointer (PRP)

PRPlistEntry1

dword?7

dword10
dwordi1
dwordi12
dwordi13
dword14

PRPlistEntry2

valueSize

reserved oejijeli| keySize

reserved

dword15

key

(a)

Write Command

description
commandID |P

dword |

dword0 F | opcode

dword1l namespacelD
dword?2
dword3

dword4

key

metadataPointer (PRP)

dword6 PRPlistEntry1

dword?7
dword8 .
dwordo PRPIlistEntry2

valueSize

reserved option keySize

dwordi3 reserved
dword14

dword15

(b) Transfer Command

key

NVMe Command
w/o Piggybacking

E' NVMe Command

w/ Piggybacking

. Value

Memory Page

Host Memory

Device Memory

Host Memory

Device Memory
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BandSlim’'s Fine-Grained Payload Transfer g

« BandSIlim employs a fine-grained inline value transfer mechanism
that piggybacks values smaller than a memory page size to NVMe
commands USing the reserved fields (gray-colored in Figure (a)&(b)).

dword | description dword | description 1 -
dword0 commandID |P F | opcode dword0 commandID |P F| opcode
dword1 namespacelD dword1 namespacelD

dword?2
dword3

key 08 I

key

metadataPointer (PRP) metadataPointer (PRP) 06
dword6 ] dword6 ]
dword? PRPlistEntry1 dword? PRPIlistEntry1 0 4 i
PRPlistEntry2 PRPlistEntry2
valueSize valueSize 0 . 2 i ]
reserved option B reserved option keySize Value SiZC
dwordis reserved dwordis reserved 0 il
dword14 dword14 0 1 4 5 6
dwerd 4 tey G4 ey 10° 10! 102 10° 100 10° 10
(a) Write Command (b) Transfer Command Value size (bytes)

Figure — Value Size CDF for RocksDB in a
production environment



BandSlim's Fine-Grained Payload Transfer

« BandSIlim employs a fine-grained inline value transfer mechanism
that piggybacks values smaller than a memory page size to NVMe
commands USing the reserved fields (gray-colored in Figure (a)&(b)).

dword |

dword0

description

commandID |P

F| opcode
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dword0 commandID _|P F| opcode
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dwordi12
dwordi13
dword14

reserved

dword15

metadataPointer (PRP)

PRPlistEntry1

PRPlistEntry2
valueSize

reserved

key

dword1l
dword?2

dword4

dword6

option WGENIGE

(a) Write Command
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5%

metadataPointer (PRP)
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(b) Transfer Command
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Figure — Vidlue Size CDF for RocksDB in a

production environment



Adaptive Value Transfer Optimization ?;‘,

 When transmitting large values, generating and sending multiple
NVMe commands in this manner can result in longer response times.

* Thus, BandSIlim also incorporates an adaptive value transfer strategy that
switches back and forth piggybacking and page-unit DMA.

Host
BandShm Key-Value Driver

ttttt

Piggybacking

L SM-Tree BandShm Key-Value Controller

with fine-grained

value addressing
NAND Flash

Device




Adaptive Value Transfer Optimization ?;‘,

 When transmitting large values, generating and sending multiple
NVMe commands in this manner can result in longer response times.

* Thus, BandSIlim also incorporates an adaptive value transfer strategy that
switches back and forth piggybacking and page-unit DMA.

Host
BandShm Key-Value Driver

Large Value T 1111
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Piggybacking

L SM-Tree BandShm Key-Value Controller
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value addressing
NAND Flash

Device




Adaptive Value Transfer Optimization @

 When transmitting large values, generating and sending multiple
NVMe commands in this manner can result in longer response times.

* Thus, BandSIlim also incorporates an adaptive value transfer strategy that
switches back and forth piggybacking and page-unit DMA.

Host
BandShm Key-Value Driver

ttttt ttttt

Piggybacking Page-Unit DMA

IO T I A A A B

L SM-Tree BandShm Key-Value Controller

with fine-grained

value addressing
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Device




Adaptive Value Transfer Optimization @

 When transmitting large values, generating and sending multiple
NVMe commands in this manner can result in longer response times.

* Thus, BandSIlim also incorporates an adaptive value transfer strategy that
switches back and forth piggybacking and page-unit DMA.

Host
ttttt ttttt

Piggybacking Page-Unit DMA

R Ve A Sy

L SM-Tree BandShm Key-Value Controller

with fine-grained

value addressing
NAND Flash

Device




Evaluation Setup

* Testbed:

KV-SSD on
Cosmos+
OpenSSD
Platform

Table 1: HW/SW specifications of the OpenSSD platform.

SoC

Xilinx Zynqg-7000 with ARM Cortex-A9 Core

NAND Module 1TB, 4 Channel & 8 Way

Interconnect PCle Gen2 X8 End-Points

Table 2: HW/SW specifications of the host node.

CPU

Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz (32 cores)

Memory

384GB DDR4

(ON)

Ubuntu 22.04

)’



Evaluation Setup

« Test Configurations:

Baseline
(NVMe PRP)

Piggyback

State-of-the-art LSM-based NVMe KV-SSD, IterKVSSD (Systor ’23).

It transfers values using only piggybacking-based transfer method.

(BandSlim)

Adaptive It transfers values using the adaptive value transfer method.

£)°



Evaluation Setup

» Workloads (Meta’s db_bench):
w(B) fillrandom, 1 million PUTs, value sizes of 8 B or 2 KiB at a 9:1 ratio.

w(C) Same as W/(B) but with the value size ratio reversed to 1:9.

fillrandom, 1 million PUTs, values sizes of 8 B, 16 B, 32 B, 64 B, 128 B,

w(D) 256 B, 512 B, 1 KiB, and 2 KiB with each size having an equal ratio.

mixgraph (real-world workloads with a maximum value size of 1 KiB
and almost 70% of values being under 35 B), 1 million PUTs.

W(M)

£)°



Evaluation Setup

» Workloads (Meta’s db_bench):
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I
Fine-Grained Value Transfer ?§

Various Workloads (W(B) ~ W(M))

» Piggyback (BandSlim) significantly reduced total PCle traffic across all workloads
and improved the average throughput compared to Baseline (NVMe PRP) for
W(M), which reflects real-world value size characteristics of RocksDB.

80+ 5-
W(B) W(D) Bl W(M = W(B) ™ W(C)  W(D) B W(M)
60- Chd
3 O
& £37
N 40+ @
9 £
N —_
20+ foE 1-
F
0 i | || | -_
Baseline Plggyback Adaptlve Baseline Piggyback Adaptive
(a) Avg. Throughput (b) Total PCle Traffic

Figure 2. Performance analysis of transfer methods.



I
Fine-Grained Value Transfer @

Various Workloads (W(B) ~ W(M))

» Piggyback (BandSlim) significantly reduced total PCle traffic across all workloads
and improved the average throughput compared to Baseline (NVMe PRP) for
W(M), which reflects real-world value size characteristics of RocksDB.
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(a) Avg. Throughput (b) Total PCLe/ Traffic

Figure 2. Performance analysis of transfer methods.
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Fine-Grained Value Transfer g

Various Workloads (W(B) ~ W(M))

» Piggyback (BandSlim) significantly reduced total PCle traffic across all workloads
and improved the average throughput compared to Baseline (NVMe PRP) for
W(M), which reflects real-world value size characteristics of RocksDB.

The proposed approach performs better than the baseline under
real-world workloads while reducing PCle traffic significantly.

.

| \ | 0 | |
Baseline Piggyback Adaptive Baseline\| Piggyback/ Adaptive
(a) Avg. Throughput (b) Total PCLe/ Traffic
Figure 2. Performance analysis of transfer methods.




Fine-Grained Value Transfer @

Various Workloads (W(B) ~ W(M))

- However, Piggyback (BandSlim) suffered significant performance degradation for

W(B), W(C) and W(D) since its serialized NVMe command generation and
processing for transferring larger values (64B~).

* Above all, Adaptive proves to be the best in all workloads.
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Figure 2. Performance analysis of transfer methods.
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Fine-Grained Value Transfer @

Various Workloads (W(B) ~ W(M))

- However, Piggyback (BandSlim) suffered significant performance degradation for

W(B), W(C) and W(D) since its serialized NVMe command generation and
processing for transferring larger values (64B~).

 Above all, Adaptive proves to be the best in all workloads.
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Fine-Grained Value Transfer g

Various Workloads (W(B) ~ W(M))

- However, Piggyback (BandSlim) suffered significant performance degradation for
W(B), W(C) and W(D) since its serialized NVMe command generation and
processing for transferring larger values (64B~).

 Above all, Adaptive proves to be the best in all workloads.

If we cover tiny values by piggybacking, and large values by fast
PRP DMA, we can achieve an optimal transfer performance.

I \ [ 0 | [ — I l
Baseline Piggyback Adaptive Baseline PiggybackN\Adaptive
(a) Avg. Throughput (b) Total PCle Traftic

Figure 2. Performance analysis of transfer methods.
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Fine-Grained Value Transfer @

Various Workloads (W(B) ~ W(M))

« However, Piggyback (BandSlim) suffered significant performance degradation for
W(B), W(C), and W(D) since its serialized NVMe command generation and

»
DIOQCE NA 10 transtrerring jarqaer values (o4

~
»

But BandSlim clearly has a limitation of suffering performance
degradation for moderately large payloads (e.qg., 64B ~ 256B)

which are also common in other real-world deployments
( Twitter reported their average KV pair size is around 100B [9] )

[9] W. Daelemans et al., “Overview of PAN 2019: Bots and Gender Profiling, Celebrity Profiling, Cross-Domain Authorship Attribution and Style Change Detection”. In Experimental IR Meets
Multilinguality, Multi- modality, and Interaction. Proceedings of the 10th Intemational Conference of the CLEF Association (CLEF 2019)

[ [ | 0 [ |
Baseline Piggyback Adaptive Baseline Piggyback\A o
(a) Avg. Throughput (b) Total PCIe Traffic
Figure 2. Performance analysis of transfer methods.
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ByteExpress’s Fine-Grained Payload Transfer

* The previous approach embeds payloads (values) in custom NVMe
commands and achieves a fine-grained payload transfer.

* However, it loses scalability for moderately NVMe CMDs--.

larger payloads due to repeated NVMe m -f'Payfoad

command generation and processing | et DRAMN
caused by its mandatory serialization = |isneeams S sQians ost DA
for data integrity of payloads.

ﬁ Data Buffer

FTL

' /0

NAND Flash _IJ

NVMe Controller




ByteExpress's Fine-Grained Payload Transfer @

* ByteExpress introduces a new method to transmit small payloads
without modifying the NVMe interface or SSD architecture.

* |t appends 64-byte payload chunks directly NVMe CMD
after the command in the Submission Queue, _ wmomer -2
avoiding PRP-based DMA inefficiencies and [ — g 4=
serialized command processing overheads. BaRspace

* The technical details are skipped
since it's now under review.

. A Data Buffer
FTL

' /0

NAND Flash .IJ




ByteExpress’s Fine-Grained Payload Transfer

* ByteExpress introduces a new method to transmit small payloads
without modifying the NVMe interface or SSD architecture.

; / —100
6- NVMe PRP (Traffic) -»%- NVMe PRP (Latency)
BandSlim (Traffic) <>- BandSlim (Latency) 30
= 5 ByteExpress (Traffic) - ByteExpress (Latency) DL—J'
Q4 ' 60 &
Gy —
R 40 =
-
=2 \&
—-20
1 —

[ I l I
32 64 128 256 512 1K 2K 4K
Payload Size (Bytes)

Figure 5: PCle traffic and average latency for various
payload sizes across different transfer methods.

* Workload: FillRandom with fixed sized payloads (32B to 4KB)
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ByteExpress’s Fine-Grained Payload Transfer

* ByteExpress introduces a new method to transmit small payloads
without modifying the NVMe interface or SSD architecture.
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Figure 5: PCle traffic and average latency for various
payload sizes across different transfer methods.

* Workload: FillRandom with fixed sized payloads (32B to 4KB)
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ByteExpress's Fine-Grained Payload Transfer g

« ByteExpress introduces a new method to transmit small payloads

without modifying the NVMe interface or SSD architecture.

; / 100
6 NVMe PRP (Traffic) -»%- NVMe PRP (Latency)
= ARala i AR —) 1 £ ! aRara 1 1) — aga

With ByteExpress’s NVMe SQ-Based Fine-Grained Transfer, we can
efficiently cover not just tiny values but also moderately larger

values (64B ~ 256B) which are frequent in real-world scenarios

Payload Size (Bytes)
Figure 5: PCle traffic and average latency for various

payload sizes across different transfer methods.

* Workload: FillRandom with fixed sized payloads (32B to 4KB)
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|
Conclusion g

We introduce BandSIlim and ByteExpress to address inefficiencies of
traditional block-interfaced storage protocols (e.g., NVMe) for small
payload transfers, especially in a domain of Key-Value SSDs.

The mismatch leads to excessive traffic on the PCle interconnect and
iIncreased transfer latency, significantly degrading performance.

Our proposed solutions reduce PCle traffic greatly and improve
performance as well for small payloads-dominant scenarios.
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Leveraging KVSSDs to Overcome Performance
Hurdles in Key-Value Stores

e KVAccel: A Novel Write Accelerator for LSM-Tree-Based KV Stores with Host-
SSD Collaboration, IPDPS, June 2025 (To Appear)
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LSM-Tree-Based Key-Value Stores @

« LSM KVS (ex. RocksDB) stores data in an append-only manner in
the active MemTable

» Data in MemTable is moved to and managed on disk through
background jobs (Flush, Compaction)

mark as

Immutable AT Active
MemTable MemTable el o o
Memory
Storage flush ! )
! Commit Log
Levelo SSTable |
}\/QO'L 1 compaction :
Leve/[ssrable] SSTable] [SSTable) ' MANIFEST
\/ L+-L>compaction !
sy ! CURRENT
s Ln-1-Ln compaction |
Level I
/"/{SSTable] [SSTable| [SSTable] m]\ : LOG

Fig. 1: An architecture of LSM-tree.
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Write Stall Problem N

* Write Stall: write operation blocked, due to bottlenecks in Flush,
Compaction
* In RocksDB, write stall occurs under these 3 scenarios
1) Incoming Writes > Flush
2) Flush > Level 0 to Level 1 Compaction
3) Pending deep level compaction size becomes heavier



Motivation
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Slowdownsp: Inefficient Write Stall Solution @

Observation #1

e RocksDB uses the slowdown method to prevent user writes from

becoming completely blocked.

e [he state-of-the-art solution ADOC2; also uses slowdowns.

= Both RocksDB and ADOC2 ultimately fall back to using

slowdown to avoid a write stall.

[1]:https://github.com/facebook/rocksdb/wiki/Write-Stalls
[2]: ADOC: Automatically Harmonizing Dataflow Between Components in Log-Structured Key-Value Stores for Improved Performance, Jinghuan Yu et al. (USENIX FAST23)
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Slowdownsr: Inefficient Write Stall Solution @

Observation #1

e Slowdowns, while preventing a complete write stall from occurring, harms
overall performance.

AL

THT RS, 1 SOy
ADGC with Slowdown

Both state of the art and industry standard solutions make use of

write slowdowns to prevent write stalls, which cause a sharp drop
in overall throughput and tail latency.

o )
= : . 2000! V.
2 150 150, preventing write _ 7. _ .
o7 ¥
Z 100 100} ” < .
_E | Sta Sooo Q 40
2050 - + Sulv ! ' - 5
S 6 . I = 0
= ‘ -
0 200 400 A00 0 200 400 a0

3|
|

Elapsed Time (s) Elapsed Time (s)
(C) RocksDB w/ Slowdown  (d) ADOC w/ Slowdown (b)
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Under-utilization of PCle Bandwidth @

Observation #2

e PCle Traffic drop sharply during a write stall, implying inefficient device

resource usage.
O RocksDB is shown to leave up to 90% of available PCle bandwidth around

PCle bandwidth is under-utilized during write stalls in industry

standard LSM-KVS due to the compaction operation
blocking device 1/0.

(a) RUL‘]-;NDB[I}

PCle Traft
g|
|
|
|
|
I
|
|
|
]
|
|
|
|
|
1'
|
I

. 1 0 20 40 60 30 100
_ 160 80 200 PCle Bandwidth Usage(%)
Time(s)

(b) Rt:ck:sli)BHJ



I
The status quo @

* Observation 1. ultimately leads to the following options for write stalls.

Slowdowns Allowing Write Stalls

Can write stalls be mitigated without sacrificing system resources

by leveraging underutilized PCle and device bandwidth
during write stalls?

* Observation 2. reveals an unexploited resource to help mitigate write
stalls and increase performance without sacrificing system resources:
underutilized PCle and device bandwidth during write stalls.



Utilizing Key-Value Interface of KV-SSD ? A

* We can leverage the available bandwidth and processing capacity of
SSD during write stalls in LSM-KVSs by temporarily redirecting
pending write requests through the key-value interface.

Host Block SSD

(a) [Key—VaIue] [ Key-VaIue] File Block NVMe Block NVMe

API Store System | | Layer Driver Controller

Host Key-Value SSD

(b) [Key-VaIueJ NVMe Key-Value NVMe [Key—VaIue]

API Driver Controller Store
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Proposed Solution: KVAccel

« KVAccel 's design is based on two key factors:
=» Disaggregation and Aggregation.

Disaggregation Aggregation
® Division of SSD into hybrid e Manage data from each interface
interface (block and key-value) as if it was one database instance
and its required 1/O paths e Unify separate I/O commands and
® Maintenance of each interface’s database state with rollback

separate LSM-Tree

£)°



Overview of KVAccel

£)°

e Co-design of hardware & software provides two |/O paths
e Different |/O paths taken based on the presence of a write stall

ma
Host “path stall path

Key-Value Store ]

File System ]

e Main-LSM

O Block interface’s LSM-Tree

PUTfkey, value)

' ~YES stall: record
. | KVAccel Metadata .
; [ Controller | NOstall:store O Main-LSM 1I/O path taken when

stall * .
Block Layer | L no write stalls are present.
L 3 E { Write Stall °check
. Detector ) status -
NVMe Device Driver ] / Mam LSM ® Dev LSM
Dovice Mok Kodame ' ”35"5“?' O Key-value interface’s LSM-Tree
(" NMe Device Controller ] = Maz:f:m O Dev-LSM I/O path taken a write
Hybrid-Interfaced SSD Key Value Cache) stall is occuri ng.

(@)




Hardware — Hybrid Dual-Interface SSD @

e Hybrid interface SSD achieved by logical NAND flash address

disaggregation via a specified address boundary.
O Each interface is unaware of the division = no risk of overlapping logical NAND pages.
O SSD issues different commands for each interface based on the given NVMe opcode.

r_ ___________________________________

 Host | Device |
| |
| Mam LSM : Dev LSM
|
| | / nsid2 /
)

e e e s e e e e e e e e e e e e e - = .--+»disaggregation point

Block Region Key-Value Region
i —
[ Hybrid Space Allncatmn Layer }
— e

. mapping
Flash Translation Layer ] table

NAND Flash

O |




Software — Detector & Controller

normal

Host _ — g Fswllpath  pytikey, value) . .
v L ' l O Detects write stalls checking 3
[ . KE}-’-‘J&[UE Store ] : : F 3\ VES stall: record
: | KVAccel | “| Metadata COmpOnentS
| ’ Flle S?Stem ] : E Contrﬂller NO stall: store Manager
vk o

L s m # of Level O SSTs
I r : report i
: Block Layrer] \ [ write stall Ocheck B MemTable size
. i ¢ | Detector status . . .
I NVMe Device Driver ] : | pas Mam LSM N Pendlng compad ction size
I & . '

- __ - _.'{.'l-J_:'I'-;_ - _.l"ﬁ: l:.!.'-!_rf'_ - E ;;‘;;‘;:;f E

Device . Rollback M

ollback Manager coche
[ NVMe Device Controller ] Dev-1.SM ! o CO nt rOI I er
Hybrid-Interfaced SSD (Key-Value Cache)

o Directs |/O commands to the
correct interface based on the
Detector’s output.

(a)

£)°



Software — Metadata & Rollback Manager g

Host — ") —>stallpath . PUT(key, value) :

e ' O Keeps track of KV pairs located
I y-Value Store ] . ~\YES stall: record

PN [ : 1 . _ .

o] R iy { Vietadata J in Dev-LSM via a hash table for
b L ar® | membership testing

: Block Layrer] : [ Write Stall | Orherk

| i+ | Detector status

I NVMe Device Driver o Mam LSM

Lo e I Z ¢ Rollback Manager

Rlock Key-Value : n?par!' "

pevice ' ‘ RollbackManager cache O Initiates and per‘for‘ms the
[ NVMe Device Controller ] .

Dev-LSM
Hybrid-Interfaced SSD Key vgue Cache) rO“baCk Operatlon based on

(a) the rollback scheduling policy
and the Detector’s output.




Rollback Operation: Scheduling g

e Rollback refers to return the KV pairs in Dev-LSM back to Main-LSM
into one LSM-KVS instance.

e Rollback operation can be scheduled eagerly or lazily based on
workload characteristics.

Eager Rollback Lazy Rollback
® Perform rollback as soon as there e Delay rollback until the current
are enough resources available write workload is completely
(by using L, file count threshold) finished
e |deal for a read orientated e |deal for a write intensive
workload to avoid slow Dev-LSM workload to lower interference of

read operations rollback with write operations



Rollback Operation: Range Scan

e Jo accelerate rollback, KV pairs are read in bulk using a range scan

operation.

® |terator reads Dev-LSM in its entirety and serializes the KV pairs.
® KV pairs are then sent to the host by performing DMA multiple times.

Host host path device path device path (scan)
e | — @) search gy identify
3
| N range
/\ | Dev-LSM MémTable L |
_ T ey :"'::'kﬁ"
/ Main-LSM | Lo _AssTable){ssTable! {sSTable)
y N : L1 _AssTable](ssTable} {ssTable] sszable}{ssTable
Write Stall | G Buiks
Detector J @ merge | S
\ |
05! Cached [l © buk DA Cached T o
epo
rep | airs H: | airs ‘ eLSM-TIree
[ RoIIback] .
Manager start |
erollback |

s
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Evaluation Setup

» Testbed: KV-SSD on
Cosmos+
OpenSSD
Platform

TABLE I: Specifications of the OpenSSD platform.

SoC

Xilinx Zyng-7000 with ARM Cortex-A9 Core

NAND Module ITB, 4 Channel & 8 Way

Interconnect PCle Gen2 x8 End-Points

TABLE II: Specifications of the host system.

CPU

Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz (32 cores),
CPU usage limited to 8 cores.

Memory

384GB DDR4

(0N

Ubuntu 22.04.4, Linux Kernel 6.6.31

0’



LSM-KVS and Benchmark Configurations

TABLE III: LSM-KVS configurations. For all figures, the
numbers next to each LSM-KVS refer to compaction thread
count. For KVACCEL, the settings refer to the Main-LSM.

LSM-KVS

|| Compaction Threads (n) | MT Size |

KVACCEL(n)

RocksDB(n)

ADOC(n)

Bl 1| =] & o =] & o —

128 MB

)’

TABLE 1V: db_bench workload configurations. Each bench-
mark was run with a 4 B key and 4 KB value size. Workload
A,B,C were run for 600 seconds, and Workload D performed
60K read operations.

Name Type Characteristics Notes (write/read ratio)
A fillrandom | write thread No write limit
B . . | write thread 0:1
readwhilewriting
C + | read thread 8:2
D seekrandom | range query thread Run atTer initial
(Seek + 1024 Next) 20GB fillrandom




Write Stall Avoidance

e Throughput minimum values greatly increased, as KVAccel is
designed to allow as much throughput as the SSD and system allows
without slowdowns.

~ 200 200 200

B

&, .

g 150, 150 | Il 150!

= 100! 1o | I ‘|‘ IO T

) L |

50 50+ ! ‘ L 11 LU LU L NN

= 6+ " - |

S 3l 3

= ittt —---- oo e S

= 0 200 400 600 0O 200 400 600 O 200 400 600
Elapse time(s) Elapse time(s) Elapse time(s)

(a) RocksDB(1) (b) ADOC(1) (¢) KVAccel(1)
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Performance Evaluation

(a) Throughput

Throughput(Kops/s)

oo
=

o]
o

B
<

I
]

0

(b) P99 Latency

RocksDB o ADOC

Thread 1 Thread 2 Thread 4

(a)

P99 Latency (us)

30
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0

B KVAccel
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Efficiency
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(c) Efficiency
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Performance Evaluation

(a) Throughput

e KVAccel shows at most a 37% and 17% improvement over than
RocksDB and ADOC, respectively.

30

I~2
=

[a—
=

RocksDB - ADOC
“» 80
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Thread 1 Thread 2 Thread 4
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Efficiency
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Performance Evaluation

(b) P99 Latency
e Maximum of 42% and 20% decrease in latency was also observed

between KVAccel and RocksDB, ADOC, respectively.

RocksDB ﬁ . ADOC B KVAccel

-

o 80 30
Z m 10
% 60 3

. >, el

% > 20 o 8
= = 5

3 40 5 = 0
= =B} A=

T} — 10 = 4
Qo N 2
—

- oW

- UThread | Thread 2 Thread 4 UThread | Thread 2 Thread 4 DThread | Thread 2 Thread 4

(a) (b) (c)
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Performance Evaluation

(c) Efficiency = Avg. Throughput(MB/s) / Avg. CPU usage(%)
e KVAccel maintains the better efficiencies in host machine’s resources
between all LSM-KVS compared, with KVAccel(1) shows the best

efficiency over all configurations.

Avg. Throughput(MB/s)

. Efficiency = Avg. CPU usage(%)
RocksDB . ADOC B KVAccel
o 80, 00— e === === 5
P @ 10 I
&' 60 2 ' ;
| > gl

X, 220 o "LIN_ 1INk
= 40 Q .

—Eﬁ ] 10 = 4

= 20} A [

Qo N 2

—

= Ay

- UThrcad | Thread 2 Thread 4 UThI‘Cﬂd | Thread 2 Thread 4 I‘:)Thnaad | Thread 2 Thread 4

(a) (b) (c)

s



Rollback Policies Evaluation

Eager vs Lazy Rollback analysis
e (b) and (c) present a read-write mix workload, where both rollback
schemes achieve similar write throughput, both holding a lead of 36%
and 51% over ADOC respectively.

RocksDB ADOC W KVAccel-L #2727 KVAccel-E
80 80 80
2
§ 6{.]_ _,f.._,f 6[] 7 60
5 Z Z
CL4D 4 40 % 40
20) :
5 20! Z 20, Z 20 .
: 4 /

Write Write Read Write Read

(a) Workload A (b) Workload B (c) Workload C
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PCle Traffic Usage

e More available PCle traffic exploited

e KVAccel takes advantage of its dual interface and demonstrate higher PCle

utilization over RocksDB.

~ 103

m 10!

% 0 100 200 300 400 500 600
= (a) RocksDB(1)

= 10*}

L 10!

O | | | | |

0 100 200 300 400 500 600

Elapse time(s)
(b) KVAccel(1)
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Conclusion g

e Current research on mitigating write stalls fall short in completely
eliminating write stalls, while failing to incorporate both hardware and

software holistically in their design.

e KVAccel demonstrates the effectiveness of hardware-software co-
design for write stall mitigation by exploiting underutilized PCle
bandwidth and computational power of SSDs during compaction.



Thank You
QsA

Presenter: Youngjae Kim
Contact: youkim@sogang.ac.kr
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