
Optimizing NVMe-Based Key-Value Interfaces and

Leveraging KVSSDs: A Comprehensive Study

Youngjae Kim, Ph.D.

Special Thanks to Junhyeok, Ki-Hwan, Hyunsun, and Seonghoon

Soongsil University Special Seminar
April 16, 2025

Contents

• Optimizing NVMe-Based Key-Value Interfaces
• BandSlim: A Novel Bandwidth and Space-Efficient KV-SSD with an

Escape-from-Block Approach, ICPP, 2024

• ByteExpress: A High-Performance and Traffic-Efficient Inline Transfer
of Small Payloads over NVMe, (under review)

• Leveraging KVSSDs to Overcome Performance Hurdles in Key-
Value Stores

• KVAccel: A Novel Write Accelerator for LSM-Tree-Based KV Stores
with Host-SSD Collaboration, IPDPS, 2025 (To Appear)

Optimizing NVMe-Based Key-Value Interfaces

• BandSlim: A Novel Bandwidth and Space-Efficient KV-SSD with an Escape-
from-Block Approach, ICPP, 2024

• ByteExpress: A High-Performance and Traffice-Efficient Inline Transfer of Small
Payloads over NVMe, (under review)

Background

Big Data Era

• A rapid adoption of Artificial Intelligence (AI), High-Performance Com-
-puting (HPC), Data Analytics, and Cloud Service in these days.

• They handle “Big Data”.

What does Data look like?

• These Big Data applications do not merely handle Blocks;
they manage variable-sized Key-Value Pairs or Objects.

Variable-sizedFixed-sized

* Picture from “Key Value SSD Explained – Concept, Device, System, and Standard” presented at SDC 2017 by S.-K.Yang,

Key-Value Store

• Therefore, these Big Data applications typically operate by
employing Key-Value Stores (e.g., RocksDB, Cassandra).

* Picture from “Key Value SSD Explained – Concept, Device, System, and Standard” presented at SDC 2017 by S.-K.Yang,

Software Stack Issue

• Key-Value Stores run on top of file system & block layer, device
driver and device controller.

Software Stack Issue

• Key-Value Stores run on top of file system & block layer, device
driver and device controller.

Do we really need these layers?

Software Stack Issue

• These layers are in place to follow the block interface, which
originated from the hard disk drives.

Software Stack Issue

• These layers are in place to follow the block interface, which
originated from the hard disk drives.

Software Stack Issue

• The problem is that these layers account for a significant portion
of the total response time in Key-Value Stores [1].

[1] Lee, C. G., Kang, H., Park, D., Park, S., Kim, Y., Noh, J., Chung, W., & Park, K. (2019). iLSM-SSD: An Intelligent LSM-Tree Based Key-Value SSD for Data Analytics. In Proceedings of the

International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS).

Key-Value Solid State Drive (KV-SSD)

• What about streamlining these layers from the storage stack?
• By making a key-value pair as the unit of data communication interface

• KV-SSDs have renovated the storage interface by changing the unit of I/O
transactions from the traditional block to key-value.

key-value

block

Key-Value Solid State Drive (KV-SSD)

• What about streamlining these layers from the storage stack?
• By making a key-value pair as the unit of data communication interface

• KV-SSDs have renovated the storage interface by changing the unit of I/O
transactions from the traditional block to key-value.

➔ lower latency & higher throughput

key-value

block

Key-Value Solid State Drive (KV-SSD)

• KV-SSD supports key-value store operations like PUT and GET.

• KV-SSD maintains Key-to-Page mapping info by deploying index
structures like Hash Table or LSM-tree.

* Picture from “Key Value SSD Explained – Concept, Device, System, and Standard” presented at SDC 2017 by S.-K.Yang,

NVMe Key-Value Command Set

• The NVMe protocol has introduced a key-value command set.

* Picture from “Key Value SSD Explained – Concept, Device, System, and Standard” presented at SDC 2017 by S.-K.Yang,

NVMe Key-Value Command Set

• The NVMe protocol has introduced a key-value command set.

• Most of commercially and academically released KV-SSDs have
utilized the NVMe key-value command set to offer key-value interface.

SK hynix KV-CSD [2] Academia

[2] Park, I., Zheng, Q., Manno, D., Yang, S., Lee, J., Bonnie, D., Settlemyer, B., Kim, Y., Chung, W., & Grider, G. (2023). KV-CSD: A Hardware-Accelerated Key-Value Store for Data-Intensive

Applications. In Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER), 132–144.

NVMe Key-Value Write Mechanism

• In a case of NVMe KV-SSD based on the LSM-tree with a key-value
separation (e.g., iLSM-SSD, KV-CSD), when writing key-value pairs, ...

NVMe Key-Value Write Mechanism

• The NVMe driver stores a key and metadata in the NVMe command,
and then submits the command to the SQ and rings the doorbell.

NVMe Key-Value Write Mechanism

• The NVMe controller issues a DMA transaction to copy the payload
(value) to the NAND page buffer within the device’s DRAM.

NVMe Key-Value Write Mechanism

• The controller constructs the LSM-tree entry containing the key, value
size, and value pointer, and programs the NAND page buffer entry.

(to show the flow clearly, it programs the NAND
page buffer entry even though it’s not full)

Motivation

Problem Definition

• According to Meta, their popular LSM KVS, RocksDB, in a production
environment experiences the size of values nearly not reaching a
hundred bytes on average [3], which is far less than the 4 KiB
memory page size.

[3] Cao, Z., Dong, S., Vemuri, S., & Du, D. H. C. (2020). Characterizing, modeling, and benchmarking RocksDB key-value workloads at Facebook. In Proceedings of the 18th USENIX Conference
on File and Storage Technologies (FAST ’20) (pp. 1-14). Santa Clara, CA, USA.

Figure – Value Size CDF for RocksDB as a MySQL storage layer (left) and RocksDB as a distributed KVS
(right)

Problem Definition

• The problem occurs with the fact that the NVMe key-value interface
still cannot extricate itself from the deeply entrenched block-interface-
assumed storage mechanisms and frameworks.

➔ is it really a `key-value` interface?

key-value

PCIe Traffic and Transfer Latency Bloating

• The NVMe’s payload transfer method, PRP, restricts DMA transfers to
occur in units of 4 KiB, a size of memory page.

• This leads to the bloated PCIe traffic and latency during value transfers,
especially for variable-sized, small values.

PCIe Traffic and Transfer Latency Bloating

• The NVMe’s payload transfer method, PRP, restricts DMA transfers to
occur in units of 4 KiB, a size of memory page.

• This leads to the bloated PCIe traffic and latency during value transfers,
especially for variable-sized, small values.

Setup IterKVSSD (Systor ’23) on Cosmos+ OpenSSD platform
- feature: SOTA LSM-based KV-SSD - PCIe Gen2 x8 lane
- 1GB of DRAM, 1TB of NAND (Toshiba), Xilinx zynq-7000

Workload fillsequential of RocksDB’s db_bench
- number of PUTs: 1 million unique KV pairs - key size: 4 B※ Traffic Amplification = (value size) / (PCIe traffic)

Limitation of Other Methods – NVMe SGL

• NVMe’s another payload transfer mechanism, Scatter-Gather List
(SGL), can support multiple variable-sized DMAs across scattered
memory segments.

Limitation of Other Methods – NVMe SGL

• However, it has been reported that the cost of enabling the SGL
outweighs the benefit for I/O smaller than 32 KiB [4].

• The Linux kernel thus establishes a minimum threshold for data transferred via SGL at 32 KiB
[5], indicating that using SGL for small value transfers is not advisable.

[4] 2017. nvme : add Scatter-Gather List (SGL) support in NVMe driver. https://lore.kernel.org/all/04aaed5c-1a8a-f601-6c9c-88bf1cf66e8a@mellanox.com/T/
[5] The Linux Kernel source code. sgl_threshold. https://github.com/torvalds/linux/blob/master/drivers/nvme/host/pci.c

Limitation of Other Methods – Host Batching

• KV-CSD and Dotori [6] have tackled this issue by implementing bulk
PUT operation, which is host-side batching.

• However, a fundamental issue with buffering the key-value entries on the host
side is the risk of data loss on power failure.

[6] Duffy, C., Shim, J., Kim, S.-H., & Kim, J.-S. (2023). Dotori: A Key-Value SSD Based KV Store. Proceedings of the VLDB Endowment, 16(6), 1560–1572.

not suitable for
mission-critical
scenarios

Limitation of Other Methods – PCIe MMIO

• PCIe MMIO-based transfer enables low-latency data exchange by
letting hosts write small payloads directly into SSD memory via the
BAR space.

• Solutions like 2B-SSD [7]
and ByteFS [8] use cache-
line-level writes to bypass
traditional block I/O paths.

[7] D. -H. Bae et al., "2B-SSD: The Case for Dual, Byte- and Block-Addressable Solid-State Drives," 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA).

[8] S. Li et al., “ByteFS: System Support for (CXL-based) Memory-Semantic Solid-State Drives”. 2025 30th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS '25).

Limitation of Other Methods – PCIe MMIO

• However, integrating this into existing NVMe devices is difficult due to
the need for extra buffer memory, transactional coordination, and

new host interfaces.
• Significant modifications

to SSD architectures and
firmware logic.

• Existing user-level APIs
cannot be reused.

[7] D. -H. Bae et al., "2B-SSD: The Case for Dual, Byte- and Block-Addressable Solid-State Drives," 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA).

[8] S. Li et al., “ByteFS: System Support for (CXL-based) Memory-Semantic Solid-State Drives”. 2025 30th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS '25).

3

2

1

1 2
3

Proposed Solutions

BandSlim & ByteExpress

Solutions: BandSlim & ByteExpress

• To tackle the PCIe traffic amplification and latency bloating problem
occurring in small key-value transfer under the NVMe key-value
transaction, we introduce BandSlim1 and ByteExpress2.

NVMe-Based Fine-Grained Payload Transfer Method

BandSlim ByteExpress

1 BandSlim: A Novel Bandwidth and Space-Efficient KV-SSD with an Escape-from-Block Approach, ICPP, 2024
2 ByteExpress: A High-Performance and Traffic-Efficient Inline Transfer of Small Payloads over NVMe, (under review)
* ByteExpress is a proposed technique from a recently submitted research paper, currently under review, and serves as an improved version of BandSlim.

BandSlim’s Fine-Grained Payload Transfer

• BandSlim employs a fine-grained inline value transfer mechanism
that piggybacks values smaller than a memory page size to NVMe
commands using the reserved fields (gray-colored in Figure (a)&(b)).

BandSlim’s Fine-Grained Payload Transfer

• BandSlim employs a fine-grained inline value transfer mechanism
that piggybacks values smaller than a memory page size to NVMe
commands using the reserved fields (gray-colored in Figure (a)&(b)).

BandSlim’s Fine-Grained Payload Transfer

• BandSlim employs a fine-grained inline value transfer mechanism
that piggybacks values smaller than a memory page size to NVMe
commands using the reserved fields (gray-colored in Figure (a)&(b)).

Figure – Value Size CDF for RocksDB in a
production environment

BandSlim’s Fine-Grained Payload Transfer

• BandSlim employs a fine-grained inline value transfer mechanism
that piggybacks values smaller than a memory page size to NVMe
commands using the reserved fields (gray-colored in Figure (a)&(b)).

Figure – Value Size CDF for RocksDB in a
production environment

64 B NVMe command
gives an opportunity

Adaptive Value Transfer Optimization

• When transmitting large values, generating and sending multiple
NVMe commands in this manner can result in longer response times.

• Thus, BandSlim also incorporates an adaptive value transfer strategy that
switches back and forth piggybacking and page-unit DMA.

Adaptive Value Transfer Optimization

• When transmitting large values, generating and sending multiple
NVMe commands in this manner can result in longer response times.

• Thus, BandSlim also incorporates an adaptive value transfer strategy that
switches back and forth piggybacking and page-unit DMA.

Large Value

Adaptive Value Transfer Optimization

• When transmitting large values, generating and sending multiple
NVMe commands in this manner can result in longer response times.

• Thus, BandSlim also incorporates an adaptive value transfer strategy that
switches back and forth piggybacking and page-unit DMA.

Adaptive Value Transfer Optimization

• When transmitting large values, generating and sending multiple
NVMe commands in this manner can result in longer response times.

• Thus, BandSlim also incorporates an adaptive value transfer strategy that
switches back and forth piggybacking and page-unit DMA.

Small
Value Large Value

Evaluation Setup

• Testbed: KV-SSD on

Cosmos+

OpenSSD

Platform

Evaluation Setup

• Test Configurations:

Baseline
(NVMe PRP)

State-of-the-art LSM-based NVMe KV-SSD, IterKVSSD (Systor ’23).

Piggyback
(BandSlim)

It transfers values using only piggybacking-based transfer method.

Adaptive It transfers values using the adaptive value transfer method.

Evaluation Setup

• Workloads (Meta’s db_bench):

Baseline State-of-the-art LSM-based NVMe KV-SSD, IterKVSSD (Systor ’23).

Piggyback It transfers values using only piggybacking-based transfer method.

Adaptive It transfers values using the adaptive value transfer method.

W(B) fillrandom, 1 million PUTs, value sizes of 8 B or 2 KiB at a 9:1 ratio.

W(C) Same as W(B) but with the value size ratio reversed to 1:9.

W(D)
fillrandom, 1 million PUTs, values sizes of 8 B, 16 B, 32 B, 64 B, 128 B,
256 B, 512 B, 1 KiB, and 2 KiB with each size having an equal ratio.

W(M)
mixgraph (real-world workloads with a maximum value size of 1 KiB
and almost 70% of values being under 35 B), 1 million PUTs.

Evaluation Setup

• Workloads (Meta’s db_bench):

Baseline State-of-the-art LSM-based NVMe KV-SSD, IterKVSSD (Systor ’23).

Piggyback It transfers values using only piggybacking-based transfer method.

Adaptive It transfers values using the adaptive value transfer method.

W(B) ➔ Small Value Dominant (8B:2KB = 9:1)

W(C) ➔ Large Value Dominant (8B:2KB = 1:9)

W(D) ➔ Balanced Value Size (8B ~ 2KB)

W(M) ➔ Real-World Pattern (mostly around 64B)

Fine-Grained Value Transfer

• Piggyback (BandSlim) significantly reduced total PCIe traffic across all workloads
and improved the average throughput compared to Baseline (NVMe PRP) for
W(M), which reflects real-world value size characteristics of RocksDB.

Figure 2. Performance analysis of transfer methods.

(a) Avg. Throughput (b) Total PCIe Traffic

Various Workloads (W(B) ~ W(M))

• Piggyback (BandSlim) significantly reduced total PCIe traffic across all workloads
and improved the average throughput compared to Baseline (NVMe PRP) for
W(M), which reflects real-world value size characteristics of RocksDB.

Figure 2. Performance analysis of transfer methods.

(a) Avg. Throughput (b) Total PCIe Traffic

Fine-Grained Value Transfer
Various Workloads (W(B) ~ W(M))

• Piggyback (BandSlim) significantly reduced total PCIe traffic across all workloads
and improved the average throughput compared to Baseline (NVMe PRP) for
W(M), which reflects real-world value size characteristics of RocksDB.

Figure 2. Performance analysis of transfer methods.

(a) Avg. Throughput (b) Total PCIe Traffic

Fine-Grained Value Transfer
Various Workloads (W(B) ~ W(M))

The proposed approach performs better than the baseline under
real-world workloads while reducing PCIe traffic significantly.

Figure 2. Performance analysis of transfer methods.

(a) Avg. Throughput (b) Total PCIe Traffic

Fine-Grained Value Transfer
Various Workloads (W(B) ~ W(M))

• However, Piggyback (BandSlim) suffered significant performance degradation for
W(B), W(C), and W(D) since its serialized NVMe command generation and
processing for transferring larger values (64B~).

• Above all, Adaptive proves to be the best in all workloads.

Figure 2. Performance analysis of transfer methods.

(a) Avg. Throughput (b) Total PCIe Traffic

Fine-Grained Value Transfer
Various Workloads (W(B) ~ W(M))

• However, Piggyback (BandSlim) suffered significant performance degradation for
W(B), W(C), and W(D) since its serialized NVMe command generation and
processing for transferring larger values (64B~).

• Above all, Adaptive proves to be the best in all workloads.

Figure 2. Performance analysis of transfer methods.

(a) Avg. Throughput (b) Total PCIe Traffic

Fine-Grained Value Transfer
Various Workloads (W(B) ~ W(M))

• However, Piggyback (BandSlim) suffered significant performance degradation for
W(B), W(C), and W(D) since its serialized NVMe command generation and
processing for transferring larger values (64B~).

• Above all, Adaptive proves to be the best in all workloads.

If we cover tiny values by piggybacking, and large values by fast
PRP DMA, we can achieve an optimal transfer performance.

Figure 2. Performance analysis of transfer methods.

(a) Avg. Throughput (b) Total PCIe Traffic

Fine-Grained Value Transfer
Various Workloads (W(B) ~ W(M))

• However, Piggyback (BandSlim) suffered significant performance degradation for
W(B), W(C), and W(D) since its serialized NVMe command generation and
processing for transferring larger values (64B~).

• Above all, Adaptive proves to be the best in all workloads.
But BandSlim clearly has a limitation of suffering performance
degradation for moderately large payloads (e.g., 64B ~ 256B)

which are also common in other real-world deployments
(Twitter reported their average KV pair size is around 100B [9])

[9] W. Daelemans et al., “Overview of PAN 2019: Bots and Gender Profiling, Celebrity Profiling, Cross-Domain Authorship Attribution and Style Change Detection”. In Experimental IR Meets
Multilinguality, Multi- modality, and Interaction. Proceedings of the 10th International Conference of the CLEF Association (CLEF 2019)

ByteExpress’s Fine-Grained Payload Transfer

• The previous approach embeds payloads (values) in custom NVMe
commands and achieves a fine-grained payload transfer.

• However, it loses scalability for moderately
larger payloads due to repeated NVMe
command generation and processing
caused by its mandatory serialization
for data integrity of payloads.

ByteExpress’s Fine-Grained Payload Transfer

• ByteExpress introduces a new method to transmit small payloads
without modifying the NVMe interface or SSD architecture.

• It appends 64-byte payload chunks directly
after the command in the Submission Queue,
avoiding PRP-based DMA inefficiencies and
serialized command processing overheads.

• The technical details are skipped
since it’s now under review.

ByteExpress’s Fine-Grained Payload Transfer

• ByteExpress introduces a new method to transmit small payloads
without modifying the NVMe interface or SSD architecture.

• It appends 64-byte payload chunks directly
after the command in the Submission Queue,
avoiding PRP-based DMA inefficiencies and
serialized command processing overheads.

• The technical details are skipped
since it’s now under review.

* Workload: FillRandom with fixed sized payloads (32B to 4KB)

ByteExpress’s Fine-Grained Payload Transfer

• ByteExpress introduces a new method to transmit small payloads
without modifying the NVMe interface or SSD architecture.

• It appends 64-byte payload chunks directly
after the command in the Submission Queue,
avoiding PRP-based DMA inefficiencies and
serialized command processing overheads.

• The technical details are skipped
since it’s now under review.

* Workload: FillRandom with fixed sized payloads (32B to 4KB)

72%

ByteExpress’s Fine-Grained Payload Transfer

• ByteExpress introduces a new method to transmit small payloads
without modifying the NVMe interface or SSD architecture.

• It appends 64-byte payload chunks directly
after the command in the Submission Queue,
avoiding PRP-based DMA inefficiencies and
serialized command processing overheads.

• The technical details are skipped
since it’s now under review.

* Workload: FillRandom with fixed sized payloads (32B to 4KB)

72%

With ByteExpress’s NVMe SQ-Based Fine-Grained Transfer, we can
efficiently cover not just tiny values but also moderately larger
values (64B ~ 256B) which are frequent in real-world scenarios

Conclusion

Conclusion

We introduce BandSlim and ByteExpress to address inefficiencies of
traditional block-interfaced storage protocols (e.g., NVMe) for small
payload transfers, especially in a domain of Key-Value SSDs.

The mismatch leads to excessive traffic on the PCIe interconnect and
increased transfer latency, significantly degrading performance.

Our proposed solutions reduce PCIe traffic greatly and improve
performance as well for small payloads-dominant scenarios.

Leveraging KVSSDs to Overcome Performance

Hurdles in Key-Value Stores

• KVAccel: A Novel Write Accelerator for LSM-Tree-Based KV Stores with Host-
SSD Collaboration, IPDPS, June 2025 (To Appear)

Background

LSM-Tree-Based Key-Value Stores

• LSM KVS (ex. RocksDB) stores data in an append-only manner in
the active MemTable

• Data in MemTable is moved to and managed on disk through
background jobs (Flush, Compaction)

Write Stall Problem

• Write Stall: write operation blocked, due to bottlenecks in Flush,
Compaction

• In RocksDB, write stall occurs under these 3 scenarios

1) Incoming Writes > Flush

2) Flush > Level 0 to Level 1 Compaction

3) Pending deep level compaction size becomes heavier

Motivation

Motivation

PCIe

Block Layer

File System

RocksDB

NVMe SSD

Motivation

PCIe

Block Layer

File System

RocksDB

NVMe SSD

User’s Put Queries

Motivation

PCIe

Block Layer

File System

RocksDB

NVMe SSD

User’s Put Queries

Motivation

PCIe

Block Layer

File System

RocksDB

NVMe SSD

User’s Put Queries

Compaction

Motivation

PCIe

Block Layer

File System

RocksDB

NVMe SSD

User’s Put Queries

Compaction

I/O Blocking

SSD Busy????

● RocksDB uses the slowdown method to prevent user writes from

becoming completely blocked.

● The state-of-the-art solution ADOC[2] also uses slowdowns.

→ Both RocksDB and ADOC[2] ultimately fall back to using

slowdown to avoid a write stall.

Slowdowns[1]: Inefficient Write Stall Solution
Observation #1

[1]:https://github.com/facebook/rocksdb/wiki/Write-Stalls
[2]: ADOC: Automatically Harmonizing Dataflow Between Components in Log-Structured Key-Value Stores for Improved Performance, Jinghuan Yu et al. (USENIX FAST’23)

● Slowdowns, while preventing a complete write stall from occurring, harms
overall performance.

I/O service is
uninterrupted

thanks to
slowdowns

preventing write
stalls...

…At the cost of
overall

throughput and
latency.

Slowdowns[1]: Inefficient Write Stall Solution
Observation #1

Both state of the art and industry standard solutions make use of
write slowdowns to prevent write stalls, which cause a sharp drop

in overall throughput and tail latency.

● PCIe Traffic drop sharply during a write stall, implying inefficient device
resource usage.
○ RocksDB is shown to leave up to 90% of available PCIe bandwidth around

50% of the time during a write stall.

Under-utilization of PCIe Bandwidth
Observation #2

PCIe bandwidth is under-utilized during write stalls in industry
standard LSM-KVS due to the compaction operation

blocking device I/O.

The status quo

• Observation 1. ultimately leads to the following options for write stalls.

• Observation 2. reveals an unexploited resource to help mitigate write

stalls and increase performance without sacrificing system resources:

underutilized PCIe and device bandwidth during write stalls.

Allowing Write Stalls

● Overall throughput and latency

conserved

● Complete interrupts in I/O

service as write stalls are

allowed to occur.

Slowdowns

● Maintains I/O service at all

times

● Overall throughput and latency

penalty due to said slowdowns

Can write stalls be mitigated without sacrificing system resources
by leveraging underutilized PCIe and device bandwidth

during write stalls?

Utilizing Key-Value Interface of KV-SSD ?

• We can leverage the available bandwidth and processing capacity of
SSD during write stalls in LSM-KVSs by temporarily redirecting
pending write requests through the key-value interface.

Proposed Solution: KVAccel

Proposed Solution: KVAccel

• KVAccel ’s design is based on two key factors:
➔ Disaggregation and Aggregation.

Disaggregation

● Division of SSD into hybrid

interface (block and key-value)

and its required I/O paths

● Maintenance of each interface’s

separate LSM-Tree

Aggregation

● Manage data from each interface

as if it was one database instance

● Unify separate I/O commands and

database state with rollback

Overview of KVAccel

● Main-LSM
○ Block interface’s LSM-Tree
○ Main-LSM I/O path taken when

no write stalls are present.

● Dev-LSM
○ Key-value interface’s LSM-Tree
○ Dev-LSM I/O path taken a write

stall is occuring.

● Co-design of hardware & software provides two I/O paths
● Different I/O paths taken based on the presence of a write stall

Hardware – Hybrid Dual-Interface SSD

● Hybrid interface SSD achieved by logical NAND flash address
disaggregation via a specified address boundary.
○ Each interface is unaware of the division ➔ no risk of overlapping logical NAND pages.

○ SSD issues different commands for each interface based on the given NVMe opcode.

Software – Detector & Controller

● Detector
○ Detects write stalls checking 3

components
■ # of Level 0 SSTs
■ MemTable size
■ Pending compaction size

● Controller
○ Directs I/O commands to the

correct interface based on the
Detector’s output.

Software – Metadata & Rollback Manager

● Metadata Manager
○ Keeps track of KV pairs located

in Dev-LSM via a hash table for
membership testing

● Rollback Manager
○ Initiates and performs the

rollback operation based on
the rollback scheduling policy
and the Detector’s output.

Rollback Operation: Scheduling

● Rollback refers to return the KV pairs in Dev-LSM back to Main-LSM
into one LSM-KVS instance.

● Rollback operation can be scheduled eagerly or lazily based on

workload characteristics.

Lazy Rollback

● Delay rollback until the current

write workload is completely

finished

● Ideal for a write intensive

workload to lower interference of

rollback with write operations

Eager Rollback

● Perform rollback as soon as there

are enough resources available

(by using L0 file count threshold)

● Ideal for a read orientated

workload to avoid slow Dev-LSM

read operations

Rollback Operation: Range Scan

● To accelerate rollback, KV pairs are read in bulk using a range scan
operation.
● Iterator reads Dev-LSM in its entirety and serializes the KV pairs.

● KV pairs are then sent to the host by performing DMA multiple times.

Evaluation

Evaluation Setup

• Testbed: KV-SSD on

Cosmos+

OpenSSD

Platform

LSM-KVS and Benchmark Configurations

● Throughput minimum values greatly increased, as KVAccel is
designed to allow as much throughput as the SSD and system allows

without slowdowns.

Write Stall Avoidance

(a) Throughput (b) P99 Latency (c) Efficiency

Performance Evaluation

(a) Throughput
● KVAccel shows at most a 37% and 17% improvement over than

RocksDB and ADOC, respectively.

1
.3

7
x

1
.1

7
x

Performance Evaluation

(b) P99 Latency
● Maximum of 42% and 20% decrease in latency was also observed

between KVAccel and RocksDB, ADOC, respectively.

0
.5

8
x

0
.8

0
x

Performance Evaluation

(c) Efficiency = Avg. Throughput(MB/s) / Avg. CPU usage(%)
● KVAccel maintains the better efficiencies in host machine’s resources

between all LSM-KVS compared, with KVAccel(1) shows the best

efficiency over all configurations.

Performance Evaluation

Eager vs Lazy Rollback analysis
● (b) and (c) present a read-write mix workload, where both rollback

schemes achieve similar write throughput, both holding a lead of 36%

and 51% over ADOC respectively.

Rollback Policies Evaluation

● More available PCIe traffic exploited
● KVAccel takes advantage of its dual interface and demonstrate higher PCIe

utilization over RocksDB.

PCIe Traffic Usage

Conclusion

● Current research on mitigating write stalls fall short in completely
eliminating write stalls, while failing to incorporate both hardware and

software holistically in their design.

● KVAccel demonstrates the effectiveness of hardware-software co-

design for write stall mitigation by exploiting underutilized PCIe
bandwidth and computational power of SSDs during compaction.

Conclusion

Thank You
Q&A

Presenter: Youngjae Kim

Contact: youkim@sogang.ac.kr

mailto:junttang@sogang.ac.kr

	Slide 1
	Slide 2: Contents
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95

