oy,

ISCOS

Data-Inten sive Computing
Systems Laboratory

Key-Value Computational
Solid-State Drive (KV-CSD)

Junhyeok Park
Advised by Prof. Youngjae Kim

)2

Big Data Computing Era

« A rapid adoption of artificial intelligence (e.g., LLM) and cloud
computing in modern data centers

« These applications handle Big Data

IT Boom H_ Big Data

B Microsoft
B Azure

0>

|
What does Data look like?

* These Big Data applications do not merely handle Blocks;
they manage variable-sized Key-Value Pairs (Objects)

Block Object

l
]
l

1

L
W [

oL

]

|
I

.
0

Fixed-sized Variable-sized

0>

What does Data look like?

* Therefore, these Big Data applications typically operate by
employing Key-Value Stores (e.g., RocksDB, Cassandra)

amazon (’
'/:,‘-.\ airbnb DynamoDB “ . Azur
- ®Rakuten Ceph Nathbw
/ Key Value » \ . mongol)B
: ' ‘ Store ; ;
Linkedfl] (@ Pinterest | Vs MyRocks

: EVCache
e2

0>

Software Stack Issue

« Key-Value Stores run on top of File System, Block Layer, Block

Device Driver and Block Device Controller

e redis . mongoDB

L

L

-

L]

: : SAMSUNG ELEC
-

L2

1]

]

® i u

V-NAND SSD

970 EVO

NVMe M.2
TR

amazon
DynamoDB

o
@

ceph

SAMSUNG |° S

|

Key-Value APT |

Host-side
Key-Value Store

File System

Block Layer

NVMe Block Driver

‘ NVMe Block Controller \

NVMe SSD

S

| A
Software Stack Issue N

« Key-Value Stores run on top of File System, Block Layer, Block
Device Driver and Block Device Controller

H g, @ W
@

e redis . mongoDB cach

| KeyValueAPI |

Host-side
Key-Value Store

File Syst
Do we really need these layers? e System

Block Layer

NVMe Block Driver

;’ V-NAND SSD SAMSUNG |° £ i]]
) 970 EVO 3

NVMe M.2 -
;E! :-'..e.r.1:-'..mr.rlrr.rr:r.:. cseom. 1 TB s | :..: : NVMe BIOCK Controuer

NVMe SSD

Software Stack Issue 5

* These layers are In place to follow the block interface, which
originated from the old HDDs

[File System]

[Block Layer]

-

=’ V-NAND SSD SAMSUNG |:
) 970 EVO :
NVMe 2

S CO. LT, 1 TB ;uin:-

—— T
B mel R .‘
w P gpll kR PN - -

Software Stack Issue

* These layers are In place to follow the block interface, which
originated from the old HDDs

[File System]

[Block Layer]

/ | ‘\‘ N\
fo N
|

Block Interface from legacy storage

Computer hard drive Py

= V-NANDSSD e snmsumﬁ -
) 970 EVO :
NVMe 1=

Oatla cadie pon \
\
o Ll ™
T \
". Y] gt . drive configuration port

0>

| A
Software Stack Issue N

* The problem is that these layers account for a significant portion
of the total response time in RocksDB

mmm User library 1 write syscall
Emm fdatasync syscall Block level I/0
800
S 700
QO
2 600F -
S 500
3
= 400
-l
o 300 |
&
= 2001 \
2 N
< 100 \
oL N N\

RocksDB NVMe SSD

| A
Software Stack Issue AN

 Utilizing the host node's resources (for File System and Block Layer)
solely to comply with block semantics contradicts the heterogeneous
computing paradigm

Quantum
devices

Software Stack Issue

* Heavy Software Stack impedes the optimal disaggregation and
scaling out of compute and memory resources in data centers

Server 1

Bws
p e

Network

i miim T
(Go0d) \0000] jees

Server 2

OF=

mion e ==

Network

Server 3
O = _

o i Network
0dtn) (G603 E
p e i -

(0onn) [coon) |esel
i Yk B]

[Fixed Configuration Infrastructure]

Rack Rack Rack
Server 4
{é} @ E {E} Compute GPU
Network Storage o80) Memory

Compute Server Pool

Fabric

.....................

.................................

Storage Pool

SH=N=

moon] lEee Eesl
e [[

@ @

EEE

GPU Pool

I 12l

Memory Pool

@ @

[Composable Disaggregated Infrastructure]

S

Software Stack Issue g

* Heavy Software Stack impedes the optimal disaggregation and

scaling out of compute and memory resources in data centers
High loads
Hard to scale out

Server 1
{uf miy) £ .
etwori
(Wi Eiid) jess)
Server 2 Storage Pool
{,!‘_-JE ; @ Network @ E @
EE?T@ tﬁ?@ @ E @
Server 3 GPU Pool
R) Network i@ [@
\000) (oada) E k—ﬁ—g H@;—fﬂ E_g@
Server 4 o -
CIZ Memory Pool
DF=N=
e b Network ! ' \nuon) |Doooy (ouon)

[Fixed Configuration Infrastructure] [Composable Disaggregated Infrastructure]

I
Key ldea &‘

* What about streamlining these layers from the storage stack?
* By making a key-value pair as the unit of data communication interface

| KeyValueAPr |
Host-side
Key-Value Store
| File System |
Block Layer

| NVMe Block Driver

I NVMe Block Controller |

NVMe SSD

| Key Idea

* What about streamlining these layers from the storage stack?
* By making a key-value pair as the unit of data communication interface

|

Key-Value API

J

Host-side
Key-Value Store

File System

Block Layer

NVMe Block Driver

I NVMe Block Controller |

NVMe SSD

Key-Value API

NVMe Key-Value Driver

h— .h

NVMe Key-Value Controller

In-device
Key-Value Store

Key-Value SSD

S

Key-Value Solid-State Drive (KV-SSD)

Samsung KVSSD

SK hynix KV-CSD

oANSUNG

Academia

Key-Value Request HOST
0 T
—“4| Key Value Interface li Key-Value API 202,3
Embedded RAM I u —] VP el iy R:-)
" Level 0 i R et] (,(,
£, KERNEL ‘
& Level 1 e e Key Range Key-Value Device Driver -
= : Tree E
: Level 6 b db - PCie R | WINNER |
cveln Interconnect NVMe Commands
3 ¥ Metadats (Key-Value Extension)
v ([LTNELITDCCLIDEILIN] " Zone R ER AN
o A] iLSM-SSD Device
Eﬂ { ‘ ‘ ‘ [LSM-based Key-Value Store
| |CDODODED| : .
z{ LDty e o Lu o
NAND Flash [J Page [Block Layer Flash Flash

0>

Key-Value Solid-State Drive (KV-SSD)

« SSD with a native key-value interface, rather than a block interface
« SSD supports key-value store operations like PUT, GET, SEEK, and NEXT
« SSD maintains Key-to-Page mapping index structures like Hash or LSM-tree

S

Storage Server

Read/Write User Data

Kev\jize

!

Key Size Range ?

!

Value Size Range ?

Valu}ﬁize

Key Value I/F Command

4

/]
Get (key) / Put (Key, Value)

N

Key Value SSD device driver

/]

Lookup /
Check hash collision

Key Value SSD
User/Device Hash Key —
Index
Physical Location / Offset <
< NAND >
NAND Page (32KB)
[—

Key-Value Solid-State Drive (KV-SSD)

‘fﬁ RocksDB D%T,g,z,?gpg . é redis mongoDB Q_I

Datacenter S/W Infra

ap Block Device .E!

VS

Datacenter S/W Infra

Storage Plugin interface

Key Value Glue Logic

ClUKey Value AP

Thin KV Library

T™X/s t l‘ WAF, RAF, Latency

“KV-interface

KV Device Driver

Commandprgtocg}

de KV Device

0>

0>

Key-Value Solid-State Drive (KV-SSD)
DynamoDB . @B redis $mongors 53

Datacenter S/W Infra Datacenter S/W Infra

S istorage Plugin interface i oooooooooStorage Plugin interface s

Key Value Glue Logic Key Value Glue Logic

R A T e NIGIRA

vs Thin KV Library
TX/s t I‘ WAF, RAF, Latency

coimmmsncBlogk Interface: i nnn P KV Interface

Block Device Driver KV Device Driver

Gl Command Protogol i i 5.15.3_515.1_.53;}lz}.z}.zi_z_i_zilz_g51.5.1_55g.i55_5.15.3_53;i_.zi;};_ﬁzf;ﬁfﬁfﬁgﬁgzl_595_@@@@5};};};};3_5_1.51.5555_5.15.1_53_5.3_515.1__53;}.51.5_3.5_1.5_1.53_5_551.5.15

ap Block Device .m de KV Device m

- Thin Storage Stack leads to optimal performance for key-value store operations

- Offloaded Key-Value Store reduces the loads of host node, leading to full disaggregation

Design Space of KV-SSDs

« KV-SSD has multiple design choices
* In-storage Key-Value Store Implementation
 Hash-based KV-SSD
« Simple design
* Low compute power required

 Limited operations and relatively low write performance
« Ex) Samsung KVSSD (2019), KAML (HPCA '17), Dotori (VLDB '23), KVrangeDB (TOS '23)

)2

* LSM-tree-based KV-SSD
« Complex design
« High compute power required

 Various operations and relatively high write performance
* EX) SK hynix KV-CSD (2023), iLSM-SSD (MASCOTS ’19), LightStore (ASPLOS ’19)

Standardization Efforts for KV-SSDs 5

* NVMe protocol, a contemporary storage protocol designed for high-
speed NAND flash memory, has recently introduced a standard
key-value command set for KV-SSDs

New Key Value [PUT] [GET } [DELETEJ [EXISTS]
Commands

Existing Command Admin |dentify commands Other non-block
Extension command for KV specific commands

Standardization Efforts for KV-SSDs 5

* A key and metadata are transferred via NVMe command submission
gueue entry, and value is transferred via DMA transactions

Key-Value PUT

Command ID

Key-Value GET

OpCode

Command ID

Key-Value DELETE

Namespace ID

OpCode

Command ID

Page List

Namespace ID

OpCode

Key

Page List

Namespace ID

Key

KV Length

Key

Buffer Size

Existing NVMe

Key-Value Extension

Standardization Efforts for KV-SSDs g

* A key and metadata are transferred via NVMe command submission
gueue entry, and value is transferred via DMA transactions

Key-Value PUT

Command ID

Key-Value GET

OpCode

Command ID

Key-Value DELETE

Namespace ID

OpCode

Command ID

Host

Page List

Namespace ID

OpCode

Key

Page List

Namespace ID

Key

Device
Memory

KV Length

Key

Buffer Size

Existing NVMe

Key-Value Extension

NAND Page Buffer

Standardization Efforts for KV-SSDs g

* A key and metadata are transferred via NVMe command submission
gueue entry, and value is transferred via DMA transactions

Key-Value PUT

Command ID

Key-Value GET

OpCode

Command ID

Key-Value DELETE

Namespace ID

OpCode

Comr and ID

Host

Page List

Namespace ID

Op!' ;ode

Key

Page List

Names pace ID

KV Length

Key

Buffer Size

kzy

Device
Memory

Existing NVMe

Key-Value Extension

NAND Page Buffer

Standardization Efforts for KV-SSDs g

* A key and metadata are transferred via NVMe command submission
gueue entry, and value is transferred via DMA transactions

Key-Value PUT

Command ID

Key-Value GET

OpCode

Command ID

Key-Value DELETE

Namespace ID

OpCode

Comr and ID

Host

Page List

Namespace ID

Op!' ;ode

Key

Page List

Names pace ID

KV Length

Key

Buffer Size

kzy

Device
Memory

Existing NVMe

Key-Value Extension

NAND Page Buffer

Standardization Efforts for KV-SSDs

S

* A key and metadata are transferred via NVMe command submission
gueue entry, and value is transferred via DMA transactions

Key-Value PUT

Command ID

Key-Value GET

OpCode

Command ID

Key-Value DELETE

Namespace ID

OpCode

Comr and I

Host

Page List

Namespace ID

Op!' ;ode

Key

Page List

Names pace ID

KV Length

Key

Buffer Size

kay

Device
Memory

Existing NVMe

Key-Value Extension

NAND Page Buffer

¥

Program

KV-SSD Usecases 5

« KV-SSD can be used independently, but it Is also envisioned to be
Integrated with existing database and storage systems

NoSQL DB Distributed DB Object Storage System
©)

s K" > ceph
. w,‘] mongoDB ’
| ‘ Swift API OSD
2 redis - i |
\ e N Storage Engine Storage Engine

o

KV Adapter KV Adapter
API
API API

/) d h 4)

KV Stacks KV Stacks KV Stacks
_ Y, \§ 4 _ Y.
7 ~N) s - ~

KV Device KV Device KV Device

KV-SSD Usecases

« KV-SSD can be used independently, but it Is also envisioned to be

Integrated with existing database and storage systems

NoSQL DB

H wr
& redis

KV Adapter

It iIs possible to use KV-SSD by replacing only the KV interface APl module
without major modifications to the existing KV stores and applications

I |

Distributed DB

. mongoDB ’

Object Storage System

()

ceph

Swift API

Storage Engine

|

KV Adapter

OSD

J

API

| |

0>

)2

Challenges in KV-SSDs

 Resource-constraint nature of SSDs

» Deploying key-value stores (Hash or LSM-tree) within SSDs requires
more memory space than traditional SSDs do

64MB DRAM for 1 MemTable

;| e — memory

- disk 1GB DRAM for 1TB NAND

L D e e | Bt
0 LSM_tree 5 V;AQNDE&,:;)O SANMSUNG
e KV Store g
) L J) W N T L TR

LE
L O O O L
@@ immutable memtable () sSTable

memiable

X LSM-tree is a data structure widely used in persistent key-value stores (e.g., RocksDB).
It is known for offering high write throughput through append-only sequential write pattern.
X MemTable is a memory component of LSM-tree. It stores recently inserted key-value pairs.
It is periodically flushed to the disk, constructing the disk files called SSTables.

Challenges in KV-SSDs 5

 Resource-constraint nature of SSDs
* ILSM-SSD (MASCOTS '19) introduced in-storage LSM-tree with a key-value

separation technique _Key-ValueEngine __ <Key, Value> Pair
* It manages values independently | <Key; Valus Log Offset> +—— ll
from the LSM-tree, thereby reducing | |
the MemTable size and consequently : |
requiring less compute power and | [wmeare | vawieAe] |
memory space withinthe SSbs = = — —————=—====—=—=—=———— J

<key, value>
FTL

SSD device r_ Page-level Mapping Table Garbage Collection l
V. i I - T I |
' | ~ Invalid 7 - Free] |
. | <key, addr> value | value | value | value | | C ol H oGy |
| 1 __= E I _ I

LSM-tree Value Log NAND Flash

X A traditional LSM-tree performs compactions for SSTables which are composed of raw key-value pairs.
Compations periodically sort, merge and reconstruct SSTables, issuing frequent read and write operations.
X The key-value separation not only reduces the size of tables, but also the amount of I/O operations occurred during compactions.

Challenges in KV-SSDs 5

 Resource-constraint nature of SSDs

 RHIK (HPDC '23) presented a resizable key-value-aware hash-based indexing
scheme that requires a maximum of one NAND flash reads to fetch metadata

|t maintains a Directory Layer in DRAM st Store/ Retriove Delete .
 Each entry in the Directory Layer N — I
points to one Record Layer entry = wna Cason handing [T TS T] index Cache | | [
: . o e 3%
« Each entry in the Record Layer is § e | \‘\ ‘ < %-
stored in only one NAND page “lel ‘w) AN §
° EaCh I’eCOI’d |n the entry pOIntS tO __E ST S S N“e:;;f
NAND pages where the value is stored . 2 Record
] N | =
=> Less memory space for indexing c]
L
38 ¢
Z g 2 |:| Flash Page
g g [Flash Block
% é* ‘ | Key-Value Pair ‘ ‘ I_PPA: Irfdex page address
. [vernzea [y | e] B

Challenges in KV-SSDs g

* How to optimize key-value store functionalities
« KV-SSD must utilize its awareness of key-value indexing scheme

« Back then, the storage device had limited opportunities to optimize its
operations for improved key-value store performance

Blackbox

NVMe SSD

3
g
= 0O
E,hn
n:r
M

Challenges in KV-SSDs

* How to optimize key-value store functionalities
« KV-SSD must utilize its awareness of key-value indexing scheme

* Now the device knows when and how the key-value store operations
(e.g., range scan, MemTable flush, compaction) will be performed

¢)

)2

Challenges in KV-SSDs

* How to optimize key-value store functionalities

* [terKVSSD (Systor '23) proposed a prefetching mechanism for index tables

and values to improve the efficiency of serving range queries within LSM-
tree-based KV-SSDs

B a. Compute [b. Flash (SSTable) read] c. Increment & compare
[d. Flash (Value) read [] e. Transfer to host

/Synchronous Index Read

CPU 4a]c e e c efalc el
NFCT ,
NFC2 d

(a) Without Index prefetch

Asynchronous
and Parallel
NAND reads

(b) With Index prefetch

S

Challenges in KV-SSDs

* How to optimize key-value store functionalities

* PinK (ATC '20) presented a level-pinning strategy to eliminate Bloom Filters
from in-storage LSM-tree, reducing the amount of in-device memory space.

Plus, PinK suggests an optimized in-storage LSM-tree search policy

[Me b][mwa] [_Bloom filter |"_| Bloom filter
mtab Memtable | [Bloom fiiter | [Bloom filter | Memory

(1..36)[5..43][32.97) Disk ,"!

-

Data Block1
Data Block2
Data Block3

LevelD

£
levell [1..13][15..23](24..35][36..64](66..97] ; -
i ." Metadata| EBloom filter L 1
' .r'. Reglon | |ndex Block

Levels (D) ()=t

Traditional LSM-tree w/ Bloom Filters L,

<-log(N)-»

- «---log(N 5T)---*>

®~ Skiplist

Lzl__.-""j|l§_l |33%‘2|-§-|-§-|

i Search range
1

' Range pointer —— \

<-log(N)-»
]

[~

\ log(T)

log(T)
e

' D T — >
oo el ;

" Pointer DRAM Lh-‘ 1
Bl()ck Flash

1

(a) level list search

h 4 5 6 7 8 9 l(J 12 13 1 54— Page #

Data Segment Header
33 39 |51 60| |
r

4 Iy 4 —
® Value

PinK LSM- tree KVSSD w/0 Bloom Filters

(b) Optimized level list search

No need to read whole target SSTables

S

Integration with Computational Storage 5

* In parallel, there are Computational Storage Devices (CSDs)
designed to offload and process some of the data-intensive
operations from the host (near-data processing)

* |In memory hierarchy

* Move data toward ALU to remedy long latency while accessing high-locality data

CPU < Cache < DRAM <_ HDD
. | | |

" |n computation hierarchy
* Move computation toward memory to remedy long latency while accessing low-

locality data
CPU DRAM HDD
| _ f | .

> CSDs have a much longer history compared to KV-SSDs; it's a concept that has been discussed since the 1990s.

I
Integration with Computational Storage g

* Products like the Samsung SmartSSD and Newport CSD are
already on the market, offering the ability to port and run
specialized programs (binaries) directly from the host

Applications

Storage & Virtualization

PYTORCH @
26 & Caffe2 Z] ﬁ

Connectors to Applications Frameworks

: Xl Ll N X Runtime, Libraries, API, Drivers, Acceleration Stack | s n M s u N G

SmartSSD

Integration with Computational Storage

* They provide a programmable environment by installing a separate

S

operating system within the device, which enables customers to carry
out optimizations tailored to their specific services

0S| Model

Application

Presentation

i application

HOST

Standard task

i distributor

[«
=
[«
Tunnel host | =
=)

NVMe Driver

Operating System

........................

Newport CSD

Standard task | |

1
=N Y & T

i Application #

I =9
Tunnel device| |~ ~ Tunnel
application =

In-storage Processing

) Operati-r;g Svstem-- T

User space : Kernel space
e e R
1

distributor

A

(a) Regular
Storage Access

1 3

'"""'E'HéFéa"ﬁ'ﬁ'ﬁ""""'t""'
Shared buffers

-a- NVMe
Controller

Flash Media
Controller

NAND
Flash
Memory

PCle Bus

Integration with Computational Storage g

« CSDs are similar to KV-SSDs, but they have a different purpose.
CSDs target more comprehensive and general scenarios

Hyperscale Optimized Big Data Mining Unstructured Data Rich-Media Services
] N redis))
Anomaly Detection, Fraud 4 ‘ mongo PAS e ‘ﬁ VIdEté::lnr:f;lslance

Prevention, Smart Surveillance MariaDB “mJ Ll

RocksDB H.264 Streams l,

Compression Compression Multi-Channel H.264 Decoder
Query Engines Multi-Channel Perseus+

Telemetry ML Inference Multi-Channel HEVC

2X-5X 2X-5% HEVC Streams
performance Needle in performance 50% more
Haystack capacity
- — — -

Storage Services Analytics Services Object Storage Smart City Storage

HS Custom Features Offline Curation

Integration with Computational Storage

* What about offloading query processing to KV-SSDs?

Hyperscale Optimized

) AlibabaCloud

HS Custom Features

2X-5X
performance

Storage Services

Big Data Mining

Anomaly Detection, Fraud
Prevention, Smart Surveillance

Offline Curation
ML Inference

Needle in
Haystack

CSSD

Analytics Services

KV-SSD + CSD ?

Unstructured Data

N e redis
",ﬂu' .I‘_I ki
RocksDB

-

Query Engines

LA) mongo
MarioDB

2X-5X
performa

CSSD

Object Storage

Rich-Media Services

H.264 Streams l,

Video Surveillance
Cameras

Multi-Channel H.264 Decoder |

Multi-Channel Perseus+

Multi-Channel HEVC

HEVC Streams
50% more

capacity

Smart City Storage

0>

Key-Value Computational SSD (KV-CSD)

« SK hynix recently announced KV-CSD, which is a fusion and
optimization of the existing KV-SSD and CSD concepts

0>

Key-Value Computational SSD (KV-CSD) g

« KV-CSD provides a key-value interface through an FPGA-based SoC
positioned as an intermediary layer between the storage and the host

* |t aims to offer not only the device-level key-value store operations but also
user-defined near-data processing capabilities
* For the storage device, Zoned Namespaces (ZNS) were used to achieve cost

..................

Application

kvsore |f | EERvicient |

(e.g.: RocksDB) 5 R |
: I, ——————————————————————————————
4
4
: ,’ f
Filesystem ; R4 ;
' R4 i KV-CSD SoC
1 4 :
Block Layer) /’ : Borad
: Device Driver D 5 E
S S A —

SSD ZNS SSD

Target Scenarios of KV-CSD g

 When we look into scientific analytics applications which are often
based on Key-Value / Object Stores, they iterate between compute &
/O phases with time-based bulk-synchronous parallel programs

Compute IO Compute |O Compute 10 [l Analytics

l Simulation Pipeline

I
Target Scenarios of KV-CSD g

* The I/Os are performed through File Systems, and data are stored
as one big or many small files per timestep

« And the data are typically accompanied by metadata that describes data
(type, dimension, etc)

Compute 10 Compute IO Compute 10 el Analytics

Time

= o v ur = 1 | Bl T
S Sr0Ev SAMSUNG |}
p 970EVO
NVMe M.2 :

I
Target Scenarios of KV-CSD g

* The I/Os are performed through File Systems, and data are stored
as one big or many small files per timestep

« And the data are typically accompanied by metadata that describes data
(type, dimension, etc)

Compute IO Compute |O Compute 10 et Analytics

Time

KV-SSD can
do some here!

: I V-MNAND 55D =
p 970EVO
NVMe M.2 1-

Target Scenarios of KV-CSD

* The applications issue gqueries on stored data, scanning them and
performing computations (join, filter, sort, aggregate) on scanned
(loaded onto host's memory) data to get what they really want

* Queries often read more data than necessary!

What we want | e | @

CPU <j Cache DRAM <j HDD

S

Target Scenarios of KV-CSD g

* The applications issue gqueries on stored data, scanning them and
performing computations (join, filter, sort, aggregate) on scanned
(loaded onto host's memory) data to get what they really want

* Queries often read more data than necessary!

What we want | e 0

CSD can do some here!
CPU <j Cache DRAM <j HDD

I
KV-CSD as Optimal Storage Device 5

* A concept of KV-SSD+CSD can reduce data movement significantly
and accelerate key-value store operation & guery performance

Simulation . Analysis
check- :
pointing l : T

:
write l

T read

——
Block SSD

Huge Data Move
during indexing and
guery processing

I
KV-CSD as Optimal Storage Device g

* A concept of KV-SSD+CSD can reduce data movement significantly
and accelerate key-value store operation & guery performance

Simulation . Analysis
check-

pointing l i T :

1 () 1

i - || offloaded ! .

: I \)
write l

T read

v : T
e —
Key-Value SSD

|
|
: Simulationi Analysis
|

——
Block SSD

Huge Data Move
during indexing and
guery processing

KV-CSD as Optimal Storage Device

S

* A concept of KV-SSD+CSD can reduce data movement significantly

and accelerate key-value store operation & guery performance

Simulation . Analysis

check- !
pointing l ! T

i
write '

T read

——
Block SSD

Huge Data Move
during indexing and
guery processing

Simulation i Analysis

v ! T
e —
Key-Value SSD

Simulation . Analysis

———
Computational
SSD

I
KV-CSD as Optimal Storage Device g

* A concept of KV-SSD+CSD can reduce data movement significantly
and accelerate key-value store operation & guery performance

Simulationi Analysis Simulationi Analysis Simulation | Analysis

|
|
: Simulation | Analysis
|

I
I
I
check- ! ! check-
pointing l ! T : ! : : pointing |
| - || offlonded | | | g o | offloaded | | | offloaded |
: R S B b I . ' . A RN GRS S .'
write ! T read | ! : T I i I put, bulk-put ! get, range-get
: | ' | . | v .
e — e — e — e —
' ' C tational :
Block SSD | Key-Value SSD [l omputationa |
, : SSD |
: : : KV-SSD + CSD
Huge Data Move I Huge Data Move I Huge Data Move I Optimal Data Move

during indexing and during query processing during indexing
guery processing

| KV-CSD as Optimal Storage Device

Reduce data movement between a host system and a storage s

- Performs data analytics where data reside (near-data processing)

- Efficient data movement increase applications’ performance

Save host system resources
- Push-down query execution can save host CPU & memory resources

- Itis suitable for heterogeneous and disaggregation paradigm in mods

High interoperability & flexibility

- Based on standard storage interface (e.g., NVMe)
and data format (e.g., Apache Arrow & Substrait)

- Break away from fixed and limited pushdown functionality

0’

|
KV-SSD, KV-CSD Call to Action A

* There are still many challenges that KV-SSD/CSD needs to address
* High cost = more than 200,000W?

(One of high-end SSDs, Samsung 990 PRO M.2 NVMe SSD, is currently selling for around 200,000 won (2024))

« Optimal designs for KV-SSD/CSD

 Implicitly-assumed-block-interface across storage layers
(e.g., NVMe protocol’'s DMA transaction mechanism)

* Integration with existing storage systems
(e.g., RocksDB, PrestoDB, Ceph, FS & FDFS)

« Combining with other next-generation devices
(e.g., ZNS-SSD, CXL Memory, NVRAM, DPU)

Thank You ©

jJunttang@sogang.ac.kr Junhyeok Park

)2

mailto:junttang@sogang.ac.kr

	슬라이드 1
	슬라이드 2
	슬라이드 3
	슬라이드 4
	슬라이드 5
	슬라이드 6
	슬라이드 7
	슬라이드 8
	슬라이드 9
	슬라이드 10
	슬라이드 11
	슬라이드 12
	슬라이드 13
	슬라이드 14
	슬라이드 15
	슬라이드 16
	슬라이드 17
	슬라이드 18
	슬라이드 19
	슬라이드 20
	슬라이드 21
	슬라이드 22
	슬라이드 23
	슬라이드 24
	슬라이드 25
	슬라이드 26
	슬라이드 27
	슬라이드 28
	슬라이드 29
	슬라이드 30
	슬라이드 31
	슬라이드 32
	슬라이드 33
	슬라이드 34
	슬라이드 35
	슬라이드 36
	슬라이드 37
	슬라이드 38
	슬라이드 39
	슬라이드 40
	슬라이드 41
	슬라이드 42
	슬라이드 43
	슬라이드 44
	슬라이드 45
	슬라이드 46
	슬라이드 47
	슬라이드 48
	슬라이드 49
	슬라이드 50
	슬라이드 51
	슬라이드 52
	슬라이드 53

