
Key-Value Computational

Solid-State Drive (KV-CSD)

Junhyeok Park

Advised by Prof. Youngjae Kim

Big Data Computing Era

• A rapid adoption of artificial intelligence (e.g., LLM) and cloud
computing in modern data centers

• These applications handle Big Data

What does Data look like?

• These Big Data applications do not merely handle Blocks;
they manage variable-sized Key-Value Pairs (Objects)

Variable-sizedFixed-sized

What does Data look like?

• Therefore, these Big Data applications typically operate by
employing Key-Value Stores (e.g., RocksDB, Cassandra)

Software Stack Issue

• Key-Value Stores run on top of File System, Block Layer, Block
Device Driver and Block Device Controller

Software Stack Issue

• Key-Value Stores run on top of File System, Block Layer, Block
Device Driver and Block Device Controller

Do we really need these layers?

Software Stack Issue

• These layers are in place to follow the block interface, which
originated from the old HDDs

Software Stack Issue

• These layers are in place to follow the block interface, which
originated from the old HDDs

Block Interface from legacy storage

Software Stack Issue

• The problem is that these layers account for a significant portion
of the total response time in RocksDB

Software Stack Issue

• Utilizing the host node's resources (for File System and Block Layer)
solely to comply with block semantics contradicts the heterogeneous
computing paradigm

Software Stack Issue

• Heavy Software Stack impedes the optimal disaggregation and
scaling out of compute and memory resources in data centers

Fabric

Compute

Storage

GPU

Memory

Rack Rack Rack

Cloud Datacenter GPU Workload (AI)

Memory Intensive
Workload

Compute Server Pool

Storage Pool

GPU Pool

Memory Pool

CXL

Server 1

Server 2

Server 3

Server 4

Network

Network

Network

Network

[Fixed Configuration Infrastructure] [Composable Disaggregated Infrastructure]

Hard to scale out
High loads

Software Stack Issue

• Heavy Software Stack impedes the optimal disaggregation and
scaling out of compute and memory resources in data centers

Fabric

Compute

Storage

GPU

Memory

Rack Rack Rack

Cloud Datacenter GPU Workload (AI)

Memory Intensive
Workload

Compute Server Pool

Storage Pool

GPU Pool

Memory Pool

CXL

Server 1

Server 2

Server 3

Server 4

Network

Network

Network

Network

[Fixed Configuration Infrastructure] [Composable Disaggregated Infrastructure]

Key Idea

• What about streamlining these layers from the storage stack?
• By making a key-value pair as the unit of data communication interface

block

Key Idea

• What about streamlining these layers from the storage stack?
• By making a key-value pair as the unit of data communication interface

block

key-value

Key-Value Solid-State Drive (KV-SSD)

Samsung KVSSD

SK hynix KV-CSD

Academia

Key-Value Solid-State Drive (KV-SSD)

• SSD with a native key-value interface, rather than a block interface
• SSD supports key-value store operations like PUT, GET, SEEK, and NEXT

• SSD maintains Key-to-Page mapping index structures like Hash or LSM-tree

Key-Value Solid-State Drive (KV-SSD)

Key-Value Solid-State Drive (KV-SSD)

- Thin Storage Stack leads to optimal performance for key-value store operations

- Offloaded Key-Value Store reduces the loads of host node, leading to full disaggregation

Design Space of KV-SSDs

• KV-SSD has multiple design choices
• In-storage Key-Value Store Implementation

• Hash-based KV-SSD

• Simple design

• Low compute power required

• Limited operations and relatively low write performance
• Ex) Samsung KVSSD (2019), KAML (HPCA ’17), Dotori (VLDB ’23), KVrangeDB (TOS ’23)

• LSM-tree-based KV-SSD

• Complex design

• High compute power required

• Various operations and relatively high write performance

• Ex) SK hynix KV-CSD (2023), iLSM-SSD (MASCOTS ’19), LightStore (ASPLOS ’19)

Standardization Efforts for KV-SSDs

• NVMe protocol, a contemporary storage protocol designed for high-
speed NAND flash memory, has recently introduced a standard
key-value command set for KV-SSDs

Standardization Efforts for KV-SSDs

• A key and metadata are transferred via NVMe command submission
queue entry, and value is transferred via DMA transactions

Standardization Efforts for KV-SSDs

• A key and metadata are transferred via NVMe command submission
queue entry, and value is transferred via DMA transactions

Host
Memory

Device
Memory

NAND Page Buffer

Standardization Efforts for KV-SSDs

• A key and metadata are transferred via NVMe command submission
queue entry, and value is transferred via DMA transactions

Host
Memory

Device
Memory

NAND Page Buffer

Standardization Efforts for KV-SSDs

• A key and metadata are transferred via NVMe command submission
queue entry, and value is transferred via DMA transactions

Host
Memory

Device
MemoryDMA

NAND Page Buffer

Standardization Efforts for KV-SSDs

• A key and metadata are transferred via NVMe command submission
queue entry, and value is transferred via DMA transactions

Host
Memory

Device
MemoryDMA

NAND Page Buffer

Program

KV-SSD Usecases

• KV-SSD can be used independently, but it is also envisioned to be
integrated with existing database and storage systems

KV-SSD Usecases

• KV-SSD can be used independently, but it is also envisioned to be
integrated with existing database and storage systems

It is possible to use KV-SSD by replacing only the KV interface API module
without major modifications to the existing KV stores and applications

Challenges in KV-SSDs

• Resource-constraint nature of SSDs
• Deploying key-value stores (Hash or LSM-tree) within SSDs requires

more memory space than traditional SSDs do

1GB DRAM for 1TB NAND

64MB DRAM for 1 MemTable

※ LSM-tree is a data structure widely used in persistent key-value stores (e.g., RocksDB).
It is known for offering high write throughput through append-only sequential write pattern.

※ MemTable is a memory component of LSM-tree. It stores recently inserted key-value pairs.
It is periodically flushed to the disk, constructing the disk files called SSTables.

LSM-tree
KV Store

Challenges in KV-SSDs

• Resource-constraint nature of SSDs
• iLSM-SSD (MASCOTS ’19) introduced in-storage LSM-tree with a key-value

separation technique
• It manages values independently

from the LSM-tree, thereby reducing
the MemTable size and consequently
requiring less compute power and
memory space within the SSDs

※ A traditional LSM-tree performs compactions for SSTables which are composed of raw key-value pairs.
Compations periodically sort, merge and reconstruct SSTables, issuing frequent read and write operations.

※ The key-value separation not only reduces the size of tables, but also the amount of I/O operations occurred during compactions.

Challenges in KV-SSDs

• Resource-constraint nature of SSDs
• RHIK (HPDC ’23) presented a resizable key-value-aware hash-based indexing

scheme that requires a maximum of one NAND flash reads to fetch metadata
• It maintains a Directory Layer in DRAM

• Each entry in the Directory Layer
points to one Record Layer entry

• Each entry in the Record Layer is
stored in only one NAND page

• Each record in the entry points to
NAND pages where the value is stored

➔ Less memory space for indexing

A
p

p
licatio

n

Challenges in KV-SSDs

• How to optimize key-value store functionalities
• KV-SSD must utilize its awareness of key-value indexing scheme

• Back then, the storage device had limited opportunities to optimize its
operations for improved key-value store performance

NVMe SSD
K

ey-V
alu

e
 Sto

re

B
lo

ck
In

te
rface

Blackbox

Challenges in KV-SSDs

• How to optimize key-value store functionalities
• KV-SSD must utilize its awareness of key-value indexing scheme

• Now the device knows when and how the key-value store operations
(e.g., range scan, MemTable flush, compaction) will be performed

KV-SSD
K

ey-V
alu

e

In
te

rface

Blackbox
for SSDs

A
p

p
licatio

n

Key-Value Store

Whitebox

Challenges in KV-SSDs

• How to optimize key-value store functionalities
• IterKVSSD (Systor ’23) proposed a prefetching mechanism for index tables

and values to improve the efficiency of serving range queries within LSM-
tree-based KV-SSDs

Asynchronous
and Parallel

NAND reads

Challenges in KV-SSDs

• How to optimize key-value store functionalities
• PinK (ATC ’20) presented a level-pinning strategy to eliminate Bloom Filters

from in-storage LSM-tree, reducing the amount of in-device memory space.
Plus, PinK suggests an optimized in-storage LSM-tree search policy

Traditional LSM-tree w/ Bloom Filters

PinK LSM-tree KVSSD w/o Bloom Filters

No need to read whole target SSTables

Integration with Computational Storage

• In parallel, there are Computational Storage Devices (CSDs)
designed to offload and process some of the data-intensive
operations from the host (near-data processing)

※ CSDs have a much longer history compared to KV-SSDs; it's a concept that has been discussed since the 1990s.

Integration with Computational Storage

• Products like the Samsung SmartSSD and Newport CSD are
already on the market, offering the ability to port and run
specialized programs (binaries) directly from the host

Integration with Computational Storage

• They provide a programmable environment by installing a separate
operating system within the device, which enables customers to carry
out optimizations tailored to their specific services

Integration with Computational Storage

• CSDs are similar to KV-SSDs, but they have a different purpose.
CSDs target more comprehensive and general scenarios

Integration with Computational Storage

• What about offloading query processing to KV-SSDs?

KV-SSD + CSD ?

Key-Value Computational SSD (KV-CSD)

• SK hynix recently announced KV-CSD, which is a fusion and
optimization of the existing KV-SSD and CSD concepts

Key-Value Computational SSD (KV-CSD)

• KV-CSD provides a key-value interface through an FPGA-based SoC
positioned as an intermediary layer between the storage and the host

• It aims to offer not only the device-level key-value store operations but also
user-defined near-data processing capabilities

• For the storage device, Zoned Namespaces (ZNS) were used to achieve cost
optimization as well

Target Scenarios of KV-CSD

• When we look into scientific analytics applications which are often
based on Key-Value / Object Stores, they iterate between compute &
I/O phases with time-based bulk-synchronous parallel programs

Target Scenarios of KV-CSD

• The I/Os are performed through File Systems, and data are stored
as one big or many small files per timestep

• And the data are typically accompanied by metadata that describes data
(type, dimension, etc)

Target Scenarios of KV-CSD

• The I/Os are performed through File Systems, and data are stored
as one big or many small files per timestep

• And the data are typically accompanied by metadata that describes data
(type, dimension, etc)

KV-SSD can
do some here!

Target Scenarios of KV-CSD

• The applications issue queries on stored data, scanning them and
performing computations (join, filter, sort, aggregate) on scanned
(loaded onto host’s memory) data to get what they really want

• Queries often read more data than necessary!

DataData

What we want

Target Scenarios of KV-CSD

• The applications issue queries on stored data, scanning them and
performing computations (join, filter, sort, aggregate) on scanned
(loaded onto host’s memory) data to get what they really want

• Queries often read more data than necessary!

DataData

What we want

CSD can do some here!

KV-CSD as Optimal Storage Device

• A concept of KV-SSD+CSD can reduce data movement significantly
and accelerate key-value store operation & query performance

Block SSD

Simulation Analysis

Indexing

write read

check-
pointing

Query
(w. Index)

Huge Data Move
during indexing and
query processing

KV-CSD as Optimal Storage Device

• A concept of KV-SSD+CSD can reduce data movement significantly
and accelerate key-value store operation & query performance

Block SSD

Simulation Analysis

Indexing

write read

check-
pointing

Query
(w. Index)

Key-Value SSD

Simulation Analysis

Indexing

Query
(w. Index)offloaded

Huge Data Move
during indexing and
query processing

Huge Data Move
during query processing

KV-CSD as Optimal Storage Device

• A concept of KV-SSD+CSD can reduce data movement significantly
and accelerate key-value store operation & query performance

Block SSD

Simulation Analysis

Indexing

write read

check-
pointing

Query
(w. Index)

Key-Value SSD

Simulation Analysis

Indexing

Query
(w. Index)offloaded

Computational
SSD

Simulation Analysis

offloaded

Query
(w. Index)

Indexing

Huge Data Move
during indexing and
query processing

Huge Data Move
during query processing

Huge Data Move
during indexing

KV-CSD as Optimal Storage Device

• A concept of KV-SSD+CSD can reduce data movement significantly
and accelerate key-value store operation & query performance

KV-SSD CSD ➔ KV-CSD+

Block SSD

Simulation Analysis

Indexing

write read

check-
pointing

Simulation Analysis

put, bulk-put get, range-get

check-
pointing

offloadedoffloaded

Indexing

Query
(w. Index)

Query
(w. Index)Key-Value SSD

Simulation Analysis

Indexing

Query
(w. Index)offloaded

Computational
SSD

Simulation Analysis

offloaded

Query
(w. Index)

Indexing

Huge Data Move
during indexing and
query processing

Huge Data Move
during query processing

Huge Data Move
during indexing

Optimal Data Move

Reduce data movement between a host system and a storage system

- Performs data analytics where data reside (near-data processing)

- Efficient data movement increase applications’ performance

Save host system resources

- Push-down query execution can save host CPU & memory resources

- It is suitable for heterogeneous and disaggregation paradigm in modern data centers

High interoperability & flexibility

- Based on standard storage interface (e.g., NVMe)
and data format (e.g., Apache Arrow & Substrait)

- Break away from fixed and limited pushdown functionality

KV-CSD as Optimal Storage Device

KV-SSD, KV-CSD Call to Action

• There are still many challenges that KV-SSD/CSD needs to address
• High cost → more than 200,000￦?

(One of high-end SSDs, Samsung 990 PRO M.2 NVMe SSD, is currently selling for around 200,000 won (2024))

• Optimal designs for KV-SSD/CSD

• Implicitly-assumed-block-interface across storage layers
(e.g., NVMe protocol’s DMA transaction mechanism)

• Integration with existing storage systems
(e.g., RocksDB, PrestoDB, Ceph, FS & FDFS)

• Combining with other next-generation devices
(e.g., ZNS-SSD, CXL Memory, NVRAM, DPU)

Thank You ☺
junttang@sogang.ac.kr Junhyeok Park

mailto:junttang@sogang.ac.kr

	슬라이드 1
	슬라이드 2
	슬라이드 3
	슬라이드 4
	슬라이드 5
	슬라이드 6
	슬라이드 7
	슬라이드 8
	슬라이드 9
	슬라이드 10
	슬라이드 11
	슬라이드 12
	슬라이드 13
	슬라이드 14
	슬라이드 15
	슬라이드 16
	슬라이드 17
	슬라이드 18
	슬라이드 19
	슬라이드 20
	슬라이드 21
	슬라이드 22
	슬라이드 23
	슬라이드 24
	슬라이드 25
	슬라이드 26
	슬라이드 27
	슬라이드 28
	슬라이드 29
	슬라이드 30
	슬라이드 31
	슬라이드 32
	슬라이드 33
	슬라이드 34
	슬라이드 35
	슬라이드 36
	슬라이드 37
	슬라이드 38
	슬라이드 39
	슬라이드 40
	슬라이드 41
	슬라이드 42
	슬라이드 43
	슬라이드 44
	슬라이드 45
	슬라이드 46
	슬라이드 47
	슬라이드 48
	슬라이드 49
	슬라이드 50
	슬라이드 51
	슬라이드 52
	슬라이드 53

