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LSM-tree based Key-Value Stores DR

e Log-Structured Merge-Tree(LSM-tree)
o Designed for write-intensive workloads
o Optimized for large-scale data
o Out-of-place updates
o Sequential batch operations

ZippyDBy

RocksDB

[1]: Eacebook, “RocksDB” https://rocksdb.org, 2012
[2]: Google, “LevelDB” https://github.com/google/leveldb, 2017
[3]: Meta, “ZippyDB” https://engineering.fb.com/2021/08/06/core-infra/zippydb/, 2021 4
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LSM-tree based Key-Value Stores
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DISCOS

e LSM KVS(e.g. RocksDB) stores data in an append-only manner in the active

MemTable

e Data in MemTable is moved to and managed on disk through background

jobs(Flush, Compaction)
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Fig. 1: An architecture of LSM-tree.
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Write Stall Problem 2 g

e Write Stall: write operation blocked, due to bottlenecks in Flush,
Compaction
¢ In RocksDB, Write stall occurs under these 3 scenarioss

o Incoming Writes > Flush
o Flush > Level 0 to Level 1 Compaction

o Pending deep level compaction size becomes heavier

[4]: SILK: Preventing Latency Spikes in Log-Structured Merge Key-Value Stores, Oana Balmau et al., USENIX ATC’'19
[5]: ADOC: Automatically Harmonizing Dataflow Between Components in Log-Structured Key-Value Stores for Improved Performance, Jinghuan Yu et al. (USENIX FAST'23)
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Existing Work: ADOC, DR

e |n three types of overflow scenarios, ADOC alleviates write stalls by
adjusting two tuning knobs
e Two tuning knobs: # of Compaction threads, MemTable size

_ # of Compaction Threads MemTable Size
Incoming Writes > Flush ‘ t

Flush > Level 0 to Level 1 t
Compaction

Pending deep level
compaction size becomes t ‘
heavier

[5]: ADOC: Automatically Harmonizing Dataflow Between Components in Log-Structured Key-Value Stores for Improved Performance, Jinghuan Yu et al. (USENIX FAST'23) 7
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Existing Work: ADOC 2%

DISCOS

e In three types of overflow scenarios, ADOC alleviates write stalls by
adjusting two tuning knobs
e Two tuning knobs: # of Compaction threads, MemTable size

ending deep leve
compaction size becomes t
heavier

4

[5]: ADOC: Automatically Harmonizing Dataflow Between Components in Log-Structured Key-Value Stores for Improved Performance, Jinghuan Yu et al. (USENIX FAST'23) 8
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Observation 1. P M
Slowdownsg: The Inefficient Write Stall Solution ~ oiscos ©

e RocksDB uses the slowdowng; method to prevent user writes from
becoming completely blocked.

e The state of the art solution ADOC;, also uses slowdowns.

= Both RocksDB and ADOCs, ultimately fall back to using

slowdown to avoid a write stall.

[5]: ADOC: Automatically Harmonizing Dataflow Between Components in Log-Structured Key-Value Stores for Improved Performance, Jinghuan Yu et al. (USENIX FAST'23)
[6]: https://github.com/facebook/rocksdb/wiki/\Write-Stalls

10
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Observation 1.
Slowdownss;: The Inefficient Write Stall Solution
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Observation 1. P R
Slowdownsg: The Inefficient Write Stall Solution ~ oiscos ©

e Slowdowns, while preventing a complete write stall from occurring,
harms overall performance.
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Slowdownse: The Inefficient Write Stall Solution  piscos

e Slowdowns, while preventing a complete write stall from occurring,

harms overall performance.

200 200
\% 150 150
Z 100 /O service is
S o B uninterrupted
=l E 3
= 200 400 600 200 400 600 thanks to
a) Rocks w/o Slowdown w/o Slowdown S|OWdOWﬂS

200 200 H I
g preventing write
& 150 150
% - N stalls...
'50 50 50°
e i
£

200 400 6 200 400 600

Elapsed Time (s) Elapsed Time (s)
(c) RocksDB w/ Slowdown (d) ADOC w/ Slowdown

s)

Latency(u

Throughput(Kops/s)

o©
(=}

D
(=}

3

5]
S

(=}

3000
2000

S
S
S

40

20

RocksDB
ADOC

RocksDB with Slowdown

/) ADOC with Slowdown

...At the cost of
overall
throughput and
latency.

13

S



Conclusion

Evaluation

Background

2

Observation 1.
Slowdownse: The Inefficient Write Stall Solution  oiscos

e Slowdowns, while preventing a complete write stall from occurring,
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Observation 2. P R
Under-utilization of PCle Bandwidth piscos

e PCle Traffic drop sharply during a write stall, implying inefficient
device resource usage.

PCle Traffic =" Write stall region == = Maximum PCle bandwidth
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Observation 2.

Under-utilization of PCle Bandwidth

e PCle Traffic drop sharply during a write stall, implying inefficient

device resource usage.

Design

Evaluation

Conclusion

o RocksDB is shown to leave up to 90% of available PCle
bandwidth around 50% of the time during a write stall.
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Observation 2. Ie.
Under-utilization of PCle Bandwidth pisCOS

e PCle Traffic drop sharply during a write stall, implying inefficient
device resource usage.
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The status quo DR

DISCOS
* Observation 1. ultimately leads to the following options for write stalls.

Slowdowns VS Allowing Write Stalls
e Maintains I/O service at all e Overall throughput and
times latency conserved
e Overall throughput and e Complete interrupts in I/O
latency penalty due to said service as write stalls are
slowdowns allowed to occur.

* Observation 2. reveals an unexploited resource to help mitigate write stalls
and increase performance without sacrificing system resources:
underutilized PCle and device bandwidth during write stalls.

18
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The status quo U2 '

DISCOS
* Observation 1. ultimately leads to the following options for write stalls.

Slowdowns VS Allowing Write Stalls

and increase performance without sacrificing system resources:
underutilized PCle and device bandwidth during write stalls.

19
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Proposed Solution: KVAccel

 KVAccel's design is based on two key factors: Disaggregation and

Aggregation.
Disaggregation Aggregation
e Division of SSD into hybrid e Manage data from each
interface (block and key- interface as if it was one
value) and its required 1/O database instance
paths e Unify separate 1/0
Maintenance of each commands and database

interface’s separate LSM-
Tree

state with rollback

21
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Overview of KVAccel 2 g

e Co-Design of Hardware & Software provides 2 |/O paths
e Different I/O paths taken based on the presence of a write stall

normal

Host = " pqn_ _—7stallpath  pyr(key, value)
KeY'Value Store ] E YES stall: record
. | KVAccel [ | Metadata
. NO stall: store
File System I : Controller Manager
) X stall *

report :

Write Stall 3 check

v ' Detector status
i ¢ : Main-LSM ‘

\ : L ;>

—————————— F————-—— | nostal : ‘

Block Key- hllm - report o Merge

Block Layer ]

: Rollback Manager
[ NVMe Device Controller ] : —
' Dev-LSM
Hybrid-Interfaced SSD (Key-Value Cache)

()
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Overview of KVAccel D g

e Co-Design of Hardware & Software provides 2 |/O paths
e Different I/O paths taken based on the presence of a write stall

YES stall: recorq
— | Metadata
NO stall: store Manager

Main-LSM

Key-Value Store ]

KVAccel

Controller

File System ]

Block Layer ]

_____'-____JJJ ______ IlOSttllls
. Block Key-Value \  Treport o
Device } : *
: Rollback Manager cache
[ NVMe Device Controller ] :
' Dev-LSM
Hybrid-Interfaced SSD (Key-Value Cache)
(@) (b)
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Overview of KVAccel D g

e Co-Design of Hardware & Software provides 2 |/O paths
e Different I/O paths taken based on the presence of a write stall

E f_‘ﬁ YES stall: recorq_
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+ | Controller |NOstall:store | Manager
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|

|
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Hybrid Dual-Interface SSD 28

e Hybrid interface SSD achieved by logical NAND flash address disaggregation
via a specified address boundary
O SSD issues different commands for each interface

-
Host

|

| A\

| nsid1 nsidz nsid3 >
| T _.--+disaggregation point

Block Region l Key-Value Region

NAND Flash

25
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Software Modules(1) DR

| e Detector
:r_l[qst_ _ _K;y_v”azl’(li’_st;r;_szl"_fm]:h: P - o Detects write stalls checking
Crieoen) i é\ g | S components
—= |} N m # of Level O SSTs
-oc ayer :

m Memtable size
! Detector . . .
: ; - m Pending compaction size

' :
___________ F - ———-— | nostall :

. Block Key-Value : report v Mar ge
pevice Rollback Manager
[ NVMe Device Controller ] T —— il ® COntrO| Ier
Hybrid-Interfaced SSD (Key-Value Cache) o Directs I/O commands to

@) the correct interface based

on the Detector’s output.
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Software Modules(2) DR

- e Metadata Manager
e Demt PR e s o Keeps track of KV pairs

Main-LSM

e e e Rollback Manager
(L VMe Device Controller ]| Doy NE = o Initiates and performs the
Hybrid-Interfaced SSD (Key-Value Cache) .
o : 5 rollback operation based on
the rollback scheduling

policy and the Detector’s
output.

N

: Key-Value Store : YES stall: recor . .

{ ) ﬁ . ‘ located in Dev-LSM via a

| — : ontroller stall: store anager .
: Ry hash table for membership
 (Block Layer ) 35&‘:5& testing
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Rollback Operation: Scheduling 28
DISCOS
e Rollback refers to return the KV pairs in Dev-LSM back to Main-LSM
into one LSM-KVS instance.
e Rollback operation can be scheduled eagerly or lazily based on
workload characteristics.

Eager Rollback Lazy Rollback
e Perform rollback as soon as e Delay rollback until the
there are enough resources current write workload is
available (by using L, file completely finished
count threshold) e |deal for a write intensive
e |deal for a read orientated workload to lower
workload to avoid slow Dev- interference of rollback with

LSM read operations write operations
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Rollback Operation DR

e To accelerate rollback, KV pairs are read in bulk using a range scan
operation.

e [terator reads Dev-LSM in its entirety and serializes the KV pairs.

e KV pairs are then sent to the host by performing DMA multiple times.

Host host path === device path device path (scan) Device
| | o search 3 identify |
| . Dev-LSM —
| rable |
I . l Bl el ot il el e ol 2 |
| Main-LSM . Lo STablg) |
--------------------------------------------- K.'HIR
| : L |SSTablel |SSTable| ""ablel |
| . |
| @ merge | © BulkScan |
| | bulk |
| @10 stall Cached L o DMA Cached . |
report KV Pairs ||[1 KV Pairs reset
I I SM-Tree |
| | |
| I |
[

Rollback
Manager start
ollback
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Evaluation Setup DR

* Testbed: KV-SSD on

Cosmos+
OpenSSD
Platform;,

TABLE I: Specifications of the OpenSSD platform.

SoC Xilinx Zyng-7000 with ARM Cortex-A9 Core
NAND Module 1TB, 4 Channel & 8 Way
Interconnect PCle Gen2 x8 End-Points

TABLE II: Specifications of the host system.

CPU Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz (32 cores),
CPU usage limited to 8 cores.

Memory 384GB DDR4

oS Ubuntu 22.04.4, Linux Kernel 6.6.31

[7]: Cosmos+ OpenSSD Platform: http://www.openssd-project.org/platforms/cosmospl/

31
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LSM-KVS and Benchmark Configurations DR

TABLE III: LSM-KVS configurations. For all figures, the TABLE IV: db_bench”workload configurations. Each bench-
numbers next to each LSM-KVS refer to compaction thread  mark was run with a 4 B key and 4 KB value size. Workload
count. For KVACCEL, the settings refer to the Main-LSM. A,B.,C were run for 600 seconds, and Workload D performed

[ LSM-KVS || Compaction Threads (n) | MT Size | 60K read operations.
1
KVACCEL(n) ) ‘ Name H Type ‘ Characteristics ‘ Notes (write/read ratio) ’
4 A fillrandom 1 write thread No write limit
1 :
B 1 write thread o
RocksDB(n) 2 128 MB readwhilewriting wite fhrea o
7 C + 1 read thread 8:2
S ; D seekrandom 1 range query thread Run affer initial
(n) - (Seek + 1024 Next) 20GB fillrandom

[8]: Eacebook, “DB Bench” https://github.com/facebook/rocksdb/wiki/ 32



https://github.com/facebook/rocksdb/wiki/

Background

Motivation

Design Conclusion

Write Stall Avoidance P R

DISCOS 6

e Throughput minimum values greatly increased, as KVAccel is
designed to allow as much throughput as the SSD and system
allows without slowdowns.

Throughput(Kops/s)

200 200 200
1501 150} 150
100 100
50~ 50+
67 67
] (]I 3
0 200 400 600 O ' ' 200 400 600
Elapse time(s) Elapse time(s) Elapse time(s)
(a) RocksDB(1) (b) ADOC(1) (c) KVAccel(1)
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Performance Evaluation D, g

DISCOS

e (a) Throughput, (b) P99 Latency, (c) Efficiency

RocksDB S ADOC B KVAccel
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Performance Evaluation P g
(a) Throughput DISCOs

e KVAccel shows at most a 37% and 17% improvement over than RocksDB
and ADOC, respectively.

. RocksDB ADOC B KVAccel
—~30 30
E 7y 10+
& 60, 2 > gl
% >~ 20! 3
< . )
a 40 Qo 3 J
<
S0 3 10! E 4
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> =) ol
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(a) (b)
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Performance Evaluation P g
(b) Throughput DISCOs

e Maximum of 30% and 20% decrease in latency was also observed between
KVAccel and RocksDB, ADOC, respectively.

RocksDB ADOC B KVAccel

80 30
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Performance Evaluation P g
(c) Efficiency PISCOS

® KVAccel maintains the better efficiencies in host machine’s resources

between all LSM-KVS compared. _— Avg. Throughput(MB/s)
CIENEY = " Avg. CPU usage(%)

. RocksDB ADOC B KVAccel
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Rollback Policies Evaluation DR
Eager vs Lazy Rollback analysis DISCOS

e From (b) and (c), we observe that it still outperforms RocksDB and ADOC
under read-oriented workloads

RocksDB ADOC HE KVAccel-L 77272 KVAccel-E
“»n 80 80 80
~=
%)
& 60 :
\Z 60|- 60/
?'5/ [
Q40 40| 40
= [
o0 |
= 20+ 207 20
o |
—
R I
= 0 Write 0f Write Read 0 Write Read
(a) Workload A (b) Workload B (¢) Workload C

W:R=10:0 W:R=9:1 W:R=8:2
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Rollback Policies Evaluation DR
Eager vs Lazy Rollback analysis DISCOS

e As the read ratio increases, Eager Rollback becomes increasingly
advantageous

RocksDB ADOC B KVAccel-L 7772 KVAccel-E
2 80 80 80
~=
a.
S 60} 60+ 7 60+
2 /
N—
340 40+ Z 40t
=
) - |
= 20! 20! / ' 201
& |
£ | et
- Write 0 Write Read 0 Write Read
(a) Workload A (b) Workload B (¢) Workload C

W:R=10:0 W:R=9:1 W:R=8:2
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PCle Traffic Usage 2R

e More available PCle traffic exploited

e KVAccel takes advantage of its dual interface and demonstrate higher PCle
utilization over RocksDB.

~ 10

<0

m 10"}

§ 0 100 200 300 400 500 600
£ (a) RocksDB(1)

— 103

=

L 101}

O | | | . |

A0 100 200 300 400 500 600

Elapse time(s)
(b) KVAccel(1)
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Background Motivation Design Evaluation

Conclusion D g

J
DISCOS

e Prior work addresses write stalls to a limited extent
o Hardware and software are treated in isolation

e KVAccel achieved a 17% improvement in throughput and a 20%
reduction in latency compared to ADOC.

e KVAccel demonstrates the effectiveness of hardware-software co-
design
o Alleviates write stalls by utilizing:
m Under-used PCle bandwidth
m Computational capabilities within SSDs

42
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KVACCEL: A Novel Write Accelerator for LSM-Tree-Based
KV Stores with Host-SSD Collaboration

Kihwan Kim'*, Hyunsun Chung'*, Seonghoon Ahn'**, Junhyeok Park’, Safdar Jamil'
Hongsu Byun', Myungcheol Lee?, Jinchun Choi?, Youngjae Kim®
"Dept. of Computer Science and Engmunng, Sogang University, Seoul, Republic of Korea
1, Dacjcon, Republic of Korea

Abstraci—Log-Structured Merge (LSM) tree-based Key-Value
Stores (KVSs) are widely adopted for their high performance in
wironments, but they often face performance
degradation due to write stals during compaction. Prior solutions,
such as regulating 1O traffic or llxlng ‘multiple compaction’
canse unexpeted dros n hroughput or o

while PG,

stalls by leveraging a dual-interface SSD. KVA
logical NAND flash space to support both block ant
interfaces, using the key-value interface as a temporary write

stals, optimizes resource usage, and ensures consistency between
the host and device by implementing an in-device LSM-based write

‘compaction threads during a write slowdown, thereby reducing
compaction duration. However, ADOC increases host CPU
utilization by employing multiple compaction threads.

Alternatively, hardware-based solutions have been investi-
gated. Persistent Memory (PM)-based designs 6], [10], [11]
buffer writes in PM before flushing them to the LSM-tree,
while FPGA-based accelerators [12]-{14], GPU [15]-{17], and
DPU [18]-120] speed up merge sort to reduce compaction
time. Key-Value SSD (KV-SSD) architectures [21]-{25] handle
Key-value operations directly storage devices, bypassing
the OS and file system overheads. Although these approaches
enhance performance, they require additional hardware (c.g.,
PM, FPGA, GPU, DPU), raising costs and complesxity.

The software solutions suffer from unnces-

tensive
evaluation shows that for write-intensive workloads, KVACCEL

sary performance degradation due to inaccurate predictions or
increased host CPU usage, while hardware solutions require
additional hardware, raising costs. In this study, we propose
pproach that avoids write stalls without

Ine .y ore,
Solid State Drive, Write Stall Mitigation

1. INTRODUCTION
Log-Structured Merge (LSM) tree-based Key-Value Store
(KVS) systems, such as RocksDB [1] and LevelDB [2], are
commonly used in write-intensive applications due to their
ability to handle high-throughput writes efficiently. However,
LSM-based KVSs (LSMKVSY) oftn experence perormance
B
[8]. These write stalls block incoming write operations, result-
ing in a significant reduction in throughput and an increase
in tail latency, which undermines system reliabilty in time-
sensitive workl
To alleviate write stalls, many software-based solutions have
been explored and deployed. RocksDB [1], one of the most
widely used LSM-KVS, implements a mechanism known as
slowdown [9]. This slowdown mechanism anticipates potential
write stalls and proactively reduces the write pressure on the
LSM-KVS. While slowdowns can prevent write stall, it may
unnecessarily decrease the throughput of RocksDB by lmiting
the write pressure directed to the LSM-KVS. Additionally,
the state-of-the-art solution ADOC [5] mitigates write stalls
by dynamically increasing batch sizes and the number of

“They are fist co-uthors and have contrbuted cqualy.
Y. Kim is the corresponding autho.

compromising KVS performance, minimizes host CPU utiiza-
tion, and requires no additional hardware costs. Our
represents a new paradigm that i fundamentally different from
existing approaches, by actively leveraging idle resources in
existing storage devices to avoid write stalls while minimizing
host CPU involvement.

In this paper, we present KVACCEL, a novel hybrid hardware-
software co-design framework that leverages a new dual-
interface SSD architecture to mitigate write stlls and optimize
the wtilzation of storage bandwidth. KVACCEL is built on the
observation that during host-side write stalls, the underlying

storage device's available VO bandwidth remains underutilized,
despl s ptennl 1o ol sional U apeations. KVAC:
CEL then incorporates a dynamic VO redircction mechanis
that monitors the status of host-side LSM-KVS and, upon
detecting a write stall, shifts writes from the LSM-KVS to the
device-side key-value write buffer.

KVACCEL presents a disaggregation of the SSD's logical
NAND flash address space into two regions: one for the
traditional block interface, which is managed by the host-side
LSM-KVS, and another for the key-value interface inspired by
the KV-SSD, which serves as a temporary write buffer to serve
‘pending write requests by bypassing the traditional LSM-based
data path during salls

To maintain consistency between the main LSM on the
host and the write buffer on the device, KVACCEL introduces

D

DISCOS

43


mailto:lewis461@sogang.ac.kr
mailto:hchung1652@sogang.ac.kr
mailto:ok10p@sogang.ac.kr
https://discos.sogang.ac.kr/

