oy,
2

aaaaaaaaaaaaaaaaaaaaaaaaaa

Systems Laboratory

BandSlim: A Novel Bandwidth and Space-Efficient
KV-SSD with an Escape-from-Block Approach

Junhyeok Park, Chang-Gyu Lee, Soon Hwang, Jungki Noh, Soonyeal Yang,
Woosuk Chung, Junghee Lee, and Youngjae Kim

ICPP 2024

Presenter: Junhyeok Park

g SOGANG "l‘

UNIVERSITY S K Fy NiX

KOREA

UNIVERSITY

Background

0

I
Big Data Era @

A rapid adoption of Artificial Intelligence (Al), High-Performance Com-
-puting (HPC), Data Analytics, and Cloud Service in these days.

* They handle “Big Data”.

G} ChatGPT

BB Microsoft
B Azure

DB: xx_036785.mfem_root
Cycle: 36785 Time:1.06549

|
What does Data look like?

* These Big Data applications do not merely handle Blocks,;
they manage variable-sized Key-Value Pairs or Objects.

Block Object

Fixed-sized Variable-sized

0>°

Key-Value Store

* Therefore, these Big Data applications typically operate by
employing Key-Value Stores (e.g., RocksDB, Cassandra).

amazon
& airbnb DynamoDB

ORakuten
Linked[T}) @ Pinterest Store B /7 myRrocks

. H BlockChain
% EVCache
ffe2
pp'e

0>°

Software Stack Issue

« Key-Value Stores run on top of file system & block layer, device

|

driver and device controller.
£y gmazon. &P

e redis . mongo DB

o
@

ceph

Key-Value APT |

Host-side
Key-Value Store

File System

Block Layer

NVMe Block Driver

‘ NVMe Block Controller \

NVMe SSD

O

| A
Software Stack Issue N

« Key-Value Stores run on top of file system & block layer, device
driver and device controller.

£ g &P . | KeyValueAPI |
®

Host-side
& redis ® mongoDB Key-Value Store

ceph

File System

Do we really need these layers?

Block Layer

NVMe Block Driver

‘ NVMe Block Controller \

NVMe SSD

| A
Software Stack Issue N

* These layers are In place to follow the block interface, which
originated from the hard disk drives.

e W s

Computer hard drive
f \ o A
P
disk — 4,,"
4

File System
Block Layer

Software Stack Issue

* These layers are In place to follow the block interface, which
originated from the hard disk drives.

SE—

File System

r———

Block Layer

e

™

GOLD P31 NVMe

O

Software Stack Issue

* The problem is that these layers account for a significant portion

of the total response time in Key-Value Stores [1].

800
700
600
500
400
300
200
100

Average Latency (usec)

mEmm User library
EEm fdatasync syscall

C— write syscall

Block level 1/0O

—

N

N

S

RocksDB

NVMe SSD

O

[1] Lee, C. G., Kang, H., Park, D., Park, S., Kim, Y., Noh, J., Chung, W., & Park, K. (2019). iLSM-SSD: An Intelligent LSM-Tree Based Key-Value SSD for Data Analytics. In Proceedings of the
International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS).

Key-Value Solid State Drive (KV-SSD)

 What about streamlining these layers from the storage stack?
« By making a key-value pair as the unit of data communication interface

« KV-SSDs have renovated the storage interface by changing the unit of 1/O
transactions from the traditional block to key-value.

KVS

Host

Key-Value
API

Host-side

Key-Value Store

NVMe SSD
|

......

NVMe
Cle Controller

[Key-Va lu

API

e]

NVMe
Driver

Key-Value SSD

NVMe

In-device
Controller | FiG AL FERS G/

0>°

I
Key-Value Solid State Drive (KV-SSD)

 What about streamlining these layers from the storage stack?
« By making a key-value pair as the unit of data communication interface

« KV-SSDs have renovated the storage interface by changing the unit of 1/O
transactions from the traditional block to key-value.

Host {m NVMe SSD
| |

Key-Value Host-side File Block NVMe NVMe
KVS GAEINERS G | System | | Layer Driver Cle Controller

Host Key-Value SSD
Key-Value| | NVMe In-device

=>» lower latency & higher throughput

NVMe
Controller

0>°

Key-Value Solid State Drive (KV-SSD)

« KV-SSD supports key-value store operations like PUT and GET.

« KV-SSD maintains Key-to-Page mapping info by deploying index
structures like Hash Table or LSM-tree.

O

Storage Server

Read/Write User Data

Key Size Range ?

Key}ize

!

!

Value Size Range ?

Valu} Size

Key Value I/F Command

\

Get (key) / Put (Key, Value)

Key Value SSD device driver

1

Key Value SSD
Lookup/
Check hash collision
> User/Device Hash Key —
Index
Physical Location / Offse
< NAND >
NAND Page (32KB)

I
NVMe Key-Value Command Set @

* The NVMe protocol has introduced a key-value command set.

New Key Value [PUT] [GET] [DELETE] [EXISTS]
Commands

Existing Command Admin Identify commands Other non-block
Extension command for KV specific commands

I
NVMe Key-Value Command Set g

* The NVMe protocol has introduced a key-value command set.

* Most of commercially and academically released KV-SSDs have
utilized the NVMe key-value command set to offer key-value interface.

SK hynix KV-CSD [2] Academia

Key-Value Request HosT
Il

Use n
Host Key-Value AP
—“4| Key Value Interface Key-Value
Embedded RAM Q _E KVSSD USER Key-Value Syscall
o Level 0 KERNEL Ty T TTTTTIITTTT
E | Key-Value Device Driver
g Level 1 m Key Range
: Tree le
Q 6 b db Interconnect NVMe Commands
Leveln ’_q) 6 Key-Value Extension
Metadate
v “||IHH|IH) [T Hllulﬂ Zone
A4
] “ITHUI HIIIIIHI H
E W W] KV Zone
¢y | L) (LD Ty I
NAND Flash [J Page [] Block

[2] Park, 1., Zheng, Q., Manno, D., Yang, S., Lee, J., Bonnie, D., Settlemyer, B., Kim, Y., Chung, W., & Grider, G. (2023). KV-CSD: A Hardware-Accelerated Key-Value Store for Data-Intensive
Applications. In Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER), 132-144.

I
NVMe Key-Value Write Mechanism g

* In a case of NVMe KV-SSD based on the LSM-tree with a key-value
separation (e.g., ILSM-SSD, KV-CSD), when writing key-value pairs, ...

PUT{(key,value)
2 alue|
NVMe Driver
Host DRAM e
s
NVMe Controller . NAND Page Buffer Ejm‘:ryJ
DO R A e
NAND Flash
/\ NAND Page
LSM-Tree —

r
16KB

I
NVMe Key-Value Write Mechanism g

 The NVMe driver stores a key and metadata in the NVMe command,
and then submits the command to the SQ and rings the doorbell.

PUT(key,value)
2 valve NVMe Command
NVMe Driver commandID
Host DRAM 1 __ opcode | o
> key N
PRPlist
PCle valueSize
NVMe Controller NAND Page Buffer Entry
SSD DRAM
NAND Flash
/\ NAND Page
LSM-Tree — —

I
NVMe Key-Value Write Mechanism @

 The NVMe controller issues a DMA transaction to copy the payload
(value) to the NAND page buffer within the device’s DRAM.

PUT(key,value)

Mem Page
L3% value NVMe Command 4KB
NVMe Driver commandID -
Host DRAM ™1~ _ opcode zues |
key -' ____________________
PRPlist ~ pe==d ;
PCle valueSize
NVMe Controller J
SSD DRAM Il
NAND Flash
/\ NAND Page
LSM-Tree — ' —

.
16KB

I
NVMe Key-Value Write Mechanism @

* The controller constructs the LSM-tree entry containing the key, value
size, and value pointer, and programs the NAND page buffer entry.

(to show the flow clearly, it programs the NAND
page buffer entry even though it’s not full)

PUT{(key,value)

Mem Page
key [Z0E NVMe Command 4KB
NVMe Driver commandID -
Host DRAM ™ m———— opcode 7eee
> key T
PRPlist ~ passi :
PCle valueSize
------------------------------ .- SRS

NVMe Controller
LSM-Tree Entry
key| valueSize va/ueAdc:!r d

LSM-Tree

Motivation

0

Problem Definition @

* As In typical KVSs, the key and value size are variable and small,
and not necessarily aligned to a block or a memory page.
« According to Meta, their popular LSM KVS, RocksDB, in a production

environment experiences the size of values nearly not reaching a hundred
bytes on average [3], which is far less than the 4 KiB memory page size.

I f ' 1 -
0.8 “ﬂ Object —¥— 0.3 |
0.6 Object 2ry —e— | 0.6 |

| Assoc —a— _

0.4 Assoc 2ry —— | g;
02 | Assoc_count - 2t _

0 *_ | ‘Non SG — 0 ' | - Value size —

109 100 102 10 10* 105 10 10 100 102 100 100 100 10°

Value size (bytes) Value size (bytes)

Figure — Value Size CDF for RocksDB as a MySQL storage layer (left) and RocksDB as a distributed KVS (right)

[3] Cao, Z., Dong, S., Vemuri, S., & Du, D. H. C. (2020). Characterizing, modeling, and benchmarking RocksDB key-value workloads at Facebook. In Proceedings of the 18th USENIX Conference
on File and Storage Technologies (FAST ’20) (pp. 1-14). Santa Clara, CA, USA.

I
Problem Definition g

* The problem occurs with the fact that the NVMe key-value interface
still cannot extricate itself from the deeply entrenched block-interface-
assumed storage mechanisms and frameworks.

Host Key-Value SSD

Key-Value| | NVMe NVMe In-device
KV-SSD [API] Driver Controller | BiGA LIRS G-

=» is it really a key-value interface?

I
Problem #1. PCle Traffic Amplification @

 The NVMe's payload transfer method, PRP, restricts DMA transfers to
occur in units of 4 KiB, a size of memory page.

» This leads to the bloated PCle traffic during value transfers, especially for
variable-sized, small values.

I
Problem #1. PCle Traffic Amplification g

 The NVMe's payload transfer method, PRP, restricts DMA transfers to
occur in units of 4 KiB, a size of memory page.

» This leads to the bloated PCle traffic during value transfers, especially for
variable-sized, small values.

—
(=)}
T

]

o

Traffic

f'-"\].4_ ::U = _
[aa] <> Response 20 2 S 2L
0 12- 'Y §100-
~ S

. =
& 10 152 & 80-
[io] 8_ H 5
~ pis 60_
> 6 105 o
3 ® & 40-
o 4 5 = &
A 2 @ = 20—

0 0-

12345678 910111213141516 32 64 128 256 512 1K

Value Size (KB) Value Size (Bytes) IterKVSSD (Systor ’23) on Cosmos+ OpenSSD platform
.)) - feature: SOTA LSM-based KV-SSD - PCle Gen2 x8 lane
(a) Total PCle Traffic & Avg. Resp. Time (b) Traffic Amplification - 1GB of DRAM, 1TB of NAND (Toshiba), Xilinx zyng-7000

. _ o _ _ Workload fillsequential of RocksDB’s db_bench
% Traffic Amplification = (value size) / (PCle traffic) - number of PUTSs: 1 million unique KV pairs - key size: 4 B

I
Problem #1. PCle Traffic Amplification @

* NVMe’'s another payload transfer mechanism, Scatter-Gather List
(SGL), can support multiple variable-sized DMAs across scattered
memory segments.

SGL List SGL Descriptor
Bt
T 6 5 4 3 2 1 0
First SGL Segment : ==
nsQ by { L SOLDesror |
SGL Descriptor
SGL Descnptor
SGL Descriptor SGL Data Block Descriptors — i |
SGL Segment < 2 g el
SGL Descriptor ype
SGL Descriptor)
SGL Descriptor [~ SGL Last Segment Descriptor I —
{ SGL Descriptor — L
Last 2 SGL Descriptor SOL Data Block Descriok 15 SGL Desc. Type Desc. pecific
SGL Segment ‘ SGL Descriptor g ¢ Lescrplors
| SGL Descriptor

Problem #1. PCle Traffic Amplification g

* However, It has been reported that the cost of enabling the SGL
outweighs the benefit for I/O smaller than 32 KiB [4].

 The Linux kernel thus establishes a minimum threshold for data transferred via SGL at 32 KiB
[5], indicating that using SGL for small value transfers is not advisable.

60
61
62
63
64
65
66
67
68
69
70
7 !
72

sgl threshold = SZ 32K;

module_param(sgl_thFe
MODULE_PARM_DESC(sgl_threshold,

static unsigned int

"Use SGLs when average request segment size is larger or equal to "
"this size. Use © to disable SGLs.");

#tdefine NVME_PCI_MIN_QUEUE_SIZE 2

#define NVME_PCI_MAX_QUEUE_SIZE 4095

static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
static const struct kernel _param_ops io_queue_depth_ops = {

.set

io_queue_depth_set,

.get

param_get_uint,

};

[4] 2017. nvme : add Scatter-Gather List (SGL) support in NVMe driver. https://lore.kernel.org/all/04aaed5c-1a8a-f601-6c9c-88bflcf66e8a@mellanox.com/T/
[5] The Linux Kernel source code. sgl_threshold. https://github.com/torvalds/linux/blob/master/drivers/nvme/host/pci.c

I
Problem #1. PCle Traffic Amplification @

« KV-CSD and Dotori [6] have tackled this issue by implementing bulk
PUT operation, which Is host-side batching.

« However, a fundamental issue with buffering the key-value entries on the host
side is the risk of data loss on power failure.

i Regular PUT B

————————————————————————

N)

Y, !
p Insert |
Bulk PUT) R

1’ Key Value i ,

3\ ‘ Key H Value ‘ i {KLOG Zone Clusters VLOG Zone Custers}

_ J - /

not suitable for
mission-critical
scenarios

[6] Duffy, C., Shim, J., Kim, S.-H., & Kim, J.-S. (2023). Dotori: A Key-Value SSD Based KV Store. Proceedings of the VLDB Endowment, 16(6), 1560-1572.

Problem #2. NAND Write 1/O Amplification @

* The packing of received payloads (values) into NAND pages within
NVMe SSDs also occurs in units of 4 KiB.

» This in-device page-unit packing clearly clashes with KV-SSDs, leading to
severe NAND write amplification.

o
5
.
-
0“
o

NAND Flash

I
Problem #2. NAND Write 1/O Amplification @

* The packing of received payloads (values) into NAND pages within
NVMe SSDs also occurs in units of 4 KiB.

» This in-device page-unit packing clearly clashes with KV-SSDs, leading to
severe NAND write amplification.

1.0 ~500
2 NAND I/O g
—0.81 © Response 400%
= o
= B
Q0.6 ~300
O ®

|_]

E—-DA- ZDDE'

() [}

50.2— 100%

Z S
00— 77T T T 7T T T T T T—TT1 T

12345678 910111213141516 32 64 128 256 512 1K
Value Size (KB) Value Size (Bytes)

(a) Total NAND I/O & Avg. Resp. Time (b) Write Amplification

X Write Amplification = (value size) / (written bytes)

Problem #2. NAND Write I/O Amplification

« KAML [7] proposed the batching for multiple values and stored them
at the NAND page level in a log-fashion.

* However, the design for efficiently packing sub-page values was not detailed enough when

considering some limitations of real-world storage devices.

Embedded

A
A

Flash memory

@ processors

&

g |.%|,3 Accele- | \
T ~c | O |

= ? O = rators

2] Y Y

S 1 | ,

o+ In-storage interconnect |
=) A Y

> Y ¥ ’

% DMA Flash Storage
O engine interface DRAM
a

PO |(

Log

el Key | Value
.

header Key | Value

P1

{hwe, Key | Value
"2l Key | Value

| eeeee Key | Value

000000000000000000000010010

000000000000000000000000010

O

[7] Y. Jdin, H.-W. Tseng, Y. Papakonstantinou, and S. Swanson, KAML: A Flexible, High-Performance Key-Value SSD, in Proceedings of the 2017 IEEE International Symposium on High

Performance Computer Architecture (HPCA), Feb. 2017.

I
Problem #2. NAND Write 1/O Amplification @

* Limitation. some DMA engines in real-world SSDs, including our testbed, require
that the transfer size and destination addresses be page-aligned [8].
* This is because the assumption that the payload is multiple blocks guided the

storage stack to be optimized for block-size transfer from memory allocations for
DMA in the both-side to the DMA engine within the device.

* EX) IOMMU (Input/Output Memory Management Unit)

Main Memory

I Physical addresses
IOMMU MMU
P 5

Device Taddresses Virtual Taddressesé

implicit page-unit
restrictions on DMA

Device CPU

THEEEssEEEEssEEEEEEEEEESsEEEEEEEsESCEEEEESEESEEEEEEEEsEEsEEEEsEEEEemnns’

[8] W. Kwon, S.-W. Sok, C.-H. Park, M.-H. Oh, and S. Hong. 2022. Gen-Z memory pool system implementation and performance measurement. ETRI Journal 44 (2022), 450-461. Issue 3
[9] The Linux Kernel documentation. 2020. Dynamic DMA mapping Guide. https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt

I
Problem #2. NAND Write 1/O Amplification @

* Limitation. some DMA engines in real-world SSDs, including our testbed, require
that the transfer size and destination addresses be page-aligned [8]

* The device drivers are typically designed to accommodate this requirement [9].

] m:
=» not supported

[8] W. Kwon, S.-W. Sok, C.-H. Park, M.-H. Oh, and S. Hong. 2022. Gen-Z memory pool system implementation and performance measurement. ETRI Journal 44 (2022), 450-461. Issue 3
[9] The Linux Kernel documentation. 2020. Dynamic DMA mapping Guide. https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt

I
Problem #2. NAND Write 1/O Amplification @

* Limitation. some DMA engines in real-world SSDs, including our testbed, require
that the transfer size and destination addresses be page-aligned [8].

* Therefore, fine-grained value packing (logging) within the NAND page buffer
necessitates memory copies extensively using device's compute resources.

= not supported =» memory copies

[8] W. Kwon, S.-W. Sok, C.-H. Park, M.-H. Oh, and S. Hong. 2022. Gen-Z memory pool system implementation and performance measurement. ETRI Journal 44 (2022), 450-461. Issue 3
[9] The Linux Kernel documentation. 2020. Dynamic DMA mapping Guide. https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt

Proposed Solution: BandSlim

0

Proposed Solution: BandSlim g

 To tackle both amplifications occurring in small key-value transfer and
storing NAND flash pages, we introduce BandSlim.

Fine-Grained Fine-Grained
Value Transfer Value Packing

(1) Fine-Grained Value Transfer g
« BandSIlim employs a fine-grained inline value transfer mechanism

that piggybacks values smaller than a memory page size to NVMe
commands using the reserved fields (gray-colored in Figure (a)&(b)).

dword | description dword | description

dword0 commandID |P F| opcode dword0 commandID |P F| opcode
dword1 namespacelD dword1 namespacelD

dword2 K p

dword3 i e

metadataPointer (PRP)

metadataPointer (PRP)

PRPlistEntry1 PRPIistEntry1
PRPIlistEntry2 PRPlistEntry2
valueSize valueSize
reserved eojilelih| keySize reserved option keySize
dword13 feserved dword13 reserved
dword14 ke dword14 ke
dword15 4 dword15 Y

(a) Write Command (b) Transfer Command

(1) Fine-Grained Value Transfer

« BandSlim employs a fine-grained inline value transfer mechanism
that piggybacks values smaller than a memory page size to NVMe
commands using the reserved fields (gray-colored in Figure (a)&(b)).

NVMe Command El NVMe Command
w/o Piggybacking w/ Piggybacking

dword | description dword | description

dword0 commandID _|P F | opcode dword0 commandID |P F | opcode

dwordl namespacelD dword1 namespacelD . Va | ue Memory Page
dword2 K dword2 p

dword3 i dword3 ey

dword4

metadataPointer (PRP) metadataPointer (PRP)
griord Host Memory Host Memory

PRPlistEntry1 dag; d? PRPIistEntry1

PRPlistEntry2 gag:gg PRPlistEntry2
dword10 valueSize valueSize vl
dwordi11 reserved eojilelih| keySize reserved option keySize i s
dword12 d J ;L : e
dword13 (SEE dword13 (ESEvE 128B ‘... 358
dword14 ke dword14 ke
dword15 4 dword15 Y

(a) Write Command (b) Transfer Command

Device Memory Device Memory

O

(1) Fine-Grained Value Transfer ?},

« BandSIlim employs a fine-grained inline value transfer mechanism

that piggybacks values smaller than a memory page size to NVMe
commands using the reserved fields (gray-colored in Figure (a)&(b)).

dword | description dword | description 1
dword0 commandID |P F| opcode dword0 commandID |P F| opcode
dword1 namespacelD dword1 namespacelD

dword?2
dword3

key 08 I

key

metadataPointer (PRP) metadataPointer (PRP) 06
PRPlistEntry1 PRPIistEntry1 0 4
PRPlistEntry2 PRPlistEntry2)
valueSize valueSize 0 . 2 r]
reserved option SRS reserved option keySize Value SiZC
dwordis reserved Gwordis reserved 0 R
dword14 dword14 0 1 4 5 6
G4 ey Giord14 ey 10 10! 1020 10° 10* 10° 10
(a) Write Command (b) Transfer Command Value size (bytes)

Figure — Value Size CDF for RocksDB in a

production environment

(1) Fine-Grained Value Transfer ?},

« BandSIlim employs a fine-grained inline value transfer mechanism

that piggybacks values smaller than a memory page size to NVMe
commands using the reserved fields (gray-colored in Figure (a)&(b)).

dword | description dword | description 1 ‘ .
dword0 commandID |P F| opcode dword0 commandID |P F| opcode _’—-""
dword1 namespacelD dword1 namespacelD

dword?2
dword3

key 08 I

key

metadataPointer (PRP) metadataPointer (PRP) 06
PRPlistEntry1 PRPIistEntry1 0 4
PRPlistEntry2 PRPlistEntry2)
valueSize valueSize 0 . 2 r r]
reserved option B reserved option keySize Value SiZC
dwordis reserved Gwordis reserved 0 R T
dword14 dword14 0 1 4 5 6
duord 4 ey G4 ke 10 10! /107 10° 10 10° 10
(a) Write Command (b) Transfer Command Value size (bytes)

Figure — Vdlue Size CDF for RocksDB in a

production environment

0

(1) Adaptive Value Transfer Optimization

* When transmitting large values, generating and sending multiple
NVMe commands in this manner can result in longer response times.

« Thus, BandSlim also incorporates an adaptive value transfer strategy that
switches back and forth piggybacking and page-unit DMA.

Host
BandShm Key-Value Driver

ttttt

Piggybacking

L SM-Tree BandShm Key-Value Controller

with fine-grained

value addressing
NAND Flash

Device

(1) Adaptive Value Transfer Optimization

0

* When transmitting large values, generating and sending multiple
NVMe commands in this manner can result in longer response times.

« Thus, BandSlim also incorporates an adaptive value transfer strategy that
switches back and forth piggybacking and page-unit DMA.

Host
BandShm Key-Value Driver

Large Value T 1§ 111

I Piggybacking I
l l l l LSM-Tree BandShm Key-Value Controller
with ﬁne-grair!ed

value addressing
NAND Flash

Device

(1) Adaptive Value Transfer Optimization

0

* When transmitting large values, generating and sending multiple
NVMe commands in this manner can result in longer response times.

« Thus, BandSlim also incorporates an adaptive value transfer strategy that
switches back and forth piggybacking and page-unit DMA.

Host
BandShm Key-Value Driver

ttttt ttttt

I Piggybacking I Page-Unit DMA

L SM-Tree BandShm Key-Value Controller

with fine-grained

value addressing
NAND Flash

Device

0

(1) Adaptive Value Transfer Optimization

* When transmitting large values, generating and sending multiple
NVMe commands in this manner can result in longer response times.

« Thus, BandSlim also incorporates an adaptive value transfer strategy that
switches back and forth piggybacking and page-unit DMA.

Host
ttttt ttttt

I Piggybacking I Page-Unit DMA

L SM-Tree BandShm Key-Value Controller

with fine-grained

value addressing
NAND Flash

Device

I
(2) Fine-Grained Value Packing g

 BandSIlim implements a Selective Packing with Backfilling Policy
locating small values to fill the gap formed by the page-alighed, DMA-
transferred value under the adaptive value transfer method.

User Requests —p User Requests —p
A B C D . piggyback c D . piggyback DMA Log Table

addr valueSize

D W = - B P fr--T=====° 1 .
' ' ¢~} page-unit ' ' i~ page-unit
' ! l LA : : l L 1 BVA 4K | (4K+512)B

Wpt N ’
¢ ‘\ . P
! hr------- 1 i ’
| : 1 I
1 I:. _______ - i
12K 16K 8K 12K 16K

(a) All Packing fiom KAML (b) Selective Packing w/ Backfilling

I
(2) Fine-Grained Value Packing g

 BandSIlim implements a Selective Packing with Backfilling Policy
locating small values to fill the gap formed by the page-alighed, DMA-
transferred value under the adaptive value transfer method.

User Requests —p User Requests —p
A B C D [rigoyvack C D [vioobacc DMALog Table

addr valueSize

D W = - B g r---=====-= i .
! ! i~ page-unit ! ' v~} page-unit
| : l Lo BN?A : : l R A 4K | (4K+512)B

\J'\iPt ¢ : -
1 Ir - T i) d
I : I I
1 L I—— 4 1
12K 16K 8K 12K 16K
(a) All Packing fiom KAML (b) Selective Packing w/ Backfilling

=» memory copies for large values = NO memory copies for large values

Evaluation

0

Evaluation Setup

e Testbed:

KV-SSD on
Cosmos+
OpenSSD
Platform

Table 1: HW/SW specifications of the OpenSSD platform.

SoC

Xilinx Zyng-7000 with ARM Cortex-A9 Core

NAND Module 1TB, 4 Channel & 8 Way

Interconnect PCle Gen2 X8 End-Points

Table 2: HW/SW specifications of the host node.

CPU

Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz (32 cores)

Memory

384GB DDR4

OS

Ubuntu 22.04

0>°

Evaluation Setup

« Test Configurations:

Baseline State-of-the-art LSM-based NVMe KV-SSD, IterKVSSD (Systor ’23).

Piggyback It transfers values using only piggybacking-based transfer method.

Adaptive It transfers values using the adaptive value transfer method.

0

Evaluation Setup

« Workloads (Meta's db_bench):

W(A) fillseq, 1 million PUTs. The value size does not change.
w(B) fillrandom, 1 million PUTs, value sizes of 8 B or 2 KiB at a 9:1 ratio.

w(C) Same as W(B) but with the value size ratio reversed to 1:9.

fillrandom, 1 million PUTs, values sizes of 8 B, 16 B, 32 B, 64 B, 128 B,

W(D) 256 B, 512 B, 1 KiB, and 2 KiB with each size having an equal ratio.

mixgraph (real-world workloads with a maximum value size of 1 KiB
and almost 70% of values being under 35 B), 1 million PUTs.

w(m)

0

Evaluation Setup

« Workloads (Meta's db_bench):

0

(1) Fine-Grained Value Transfer
Sequential Write Workload (W(A))

» Piggyback achieves a remarkable reduction in PCle traffic of up to 97.9%.

 As the value size increases with piggybacking applied, the PCle traffic and the
response time begins to increase due to the addition of trailing commands.

—100

6 Baseline (Traffic) -%- Baseline (Response)
= Piggyback (Traffic) = -© Piggyback (Response) g0 &
CEN ke
9 4] -
= 3
S 3 =
E -40 E
2
= 20 &

1 i — X — KK S KX — X S

€, > >
0 | l | | 0

[| | | [| [
4 8 16 32 64 128 256 512 1K 2K 4K
Value Size (B)

Figure 1. Total PCle Traffic and Avg. Response Time.

s

(1) Fine-Grained Value Transfer
Sequential Write Workload (W(A))

» Piggyback achieves a remarkable reduction in PCle traffic of up to 97.9%.

 As the value size increases with piggybacking applied, the PCle traffic and the
response time begins to increase due to the addition of trailing commands.

6 Baseline (Traffic) -%- Baseline (Response)
& Piggyback (Traffic) @ -© Piggyback (Response)
0>
S 4
e AAANAAAAN
— 3_
H
82+ /
e
1 XF. ~>e—i -—>e—l 3 P Ve WA VA I/ L, W

0 | | | |

-100

| | I
> (o) Qo
o o o

b
o
(strl) owir], @suodsay

[| | | [| [
4 8 16 32 64 128 256 512 1K 2K 4K
Value Size (B)

Figure 1. Total PCle Traffic and Avg. Response Time.

o

S

(1) Fine-Grained Value Transfer
Sequential Write Workload (W(A))

» Piggyback achieves a remarkable reduction in PCle traffic of up to 97.9%.

» As the value size increases with piggybacking applied, the PCle traffic and the
response time begins to increase due to the addition of trailing commands.

6 Baseline (Traffic) -%- Baseline (Respon/®)
— Piggyback (Traffic) @ -© Piggyback (Respd se)

I I T e oy e s

0 | | | |

-100

O N
-] o o
(strl) owir], @suodsay

I
o
o

[| | | [| [
4 8 16 32 64 128 256 512 1K 2K 4K
Value Size (B)

Figure 1. Total PCle Traffic and Avg. Response Time.

o

O

(1) Fine-Grained Value Transfer g

Various Workloads (W(B) ~ W(M))

« Even though Piggyback can increase response times greatly, Piggyback still
Improved the average throughput by about 22% compared to Baseline for W(M).

« Above all, Adaptive proves to be the best in all workloads.

80- 5
W(B) W(D) B W(M = W(B) ™ W(C) = W(D) m W(M)
60- o4
o o
b, £37
n40- ©
e -
N —_
20 21
F
0 0 I - | ’-—
Baseline P1ggyback Adaptlve Baseline Piggyback Adaptive
(a) Avg. Throughput (b) Total PCle Traffic

Figure 2. Performance analysis of transfer methods.

(1) Fine-Grained Value Transfer g

Various Workloads (W(B) ~ W(M))

« Even though Piggyback can increase response times greatly, Piggyback still
Improved the average throughput by about 22% compared to Baseline for W(M).

« Above all, Adaptive proves to be the best in all workloads.

80- 5
W(B) W(D) B W(M = W(B) ™ W(C) ~ W(D) B W(M)
60- o4
o o
b, £37
n40- ©
e -
N —_
20 21
F
0 0 A8 W R — [/
Baseline P1ggyback Adaptlve Baseline\| Piggyback/ Adaptive
(a) Avg. Throughput (b) TotalNPCle Taffic

Figure 2. Performance analysis of transfer methods.

(1) Fine-Grained Value Transfer 5

Various Workloads (W(B) ~ W(M))

« Even though Piggyback can increase response times greatly, Piggyback still
Improved the average throughput by about 22% compared to Baseline for W(M).

« Above all, Adaptive proves to be the best in all workloads.

80- 5
W(B) ™ W(C W(D) B W(M = W(B) ™ W(C) ~ W(D) B W(M)
60- o4
® I 0
@ =Ey
n40- ©
e -
N —_
20 21
F
0 - T e ;
Baseline P1ggyback Adaptlve Baseline\| Piggyback/ Adaptive
(a) Avg. Throughput (b) TotalNPCle Taffic

Figure 2. Performance analysis of transfer methods.

(1) Fine-Grained Value Transfer g

Various Workloads (W(B) ~ W(M))

« Even though Piggyback can increase response times greatly, Piggyback still
Improved the average throughput by about 22% compared to Baseline for W(M).

« Above all, Adaptive proves to be the best in all workloads.

80+ 5
W(B) W(D) Bl W(M = W(B) ™ W(C) W(D) B W(M)
60- o4
o o
b, £37
n40- ©
e -
N —
20 21
F
0 0 I - | ’-—
Baseline P1ggyback Adaptlve Baseline Piggyback Adaptive
(a) Avg. Throughput (b) Total PCle Traffic

Figure 2. Performance analysis of transfer methods.

(1) Fine-Grained Value Transfer g

Various Workloads (W(B) ~ W(M))

« Even though Piggyback can increase response times greatly, Piggyback still
Improved the average throughput by about 22% compared to Baseline for W(M).

« Above all, Adaptive proves to be the best in all workloads.

80+ 5
W(B) W(D) Bl W(M = W(B)|m™ W) WD) = wWM)
60- o4
o o
b, £37
n40- ©
e -
N —
20 21
F
0 0 I - | ’-—
Baseline P1ggyback Adaptlve Baseline Piggyback Adaptive
(a) Avg. Throughput (b) Total PCle Traffic

Figure 2. Performance analysis of transfer methods.

I
(1) Fine-Grained Value Transfer g

Various Workloads (W(B) ~ W(M))

« Even though Piggyback can increase response times greatly, Piggyback still
Improved the average throughput by about 22% compared to Baseline for W(M).

« Above all, Adaptive proves to be the best in all workloads.

The proposed approach performs better than the baseline under
real-world workloads while reducing PCle traffic significantly.

| | | 0 | [— — .
Baseline Piggyback Adaptive Baseline Piggyback Adaptive
(a) Avg. Throughput (b) Total PCle Traffic

Figure 2. Performance analysis of transfer methods.

(1) Fine-Grained Value Transfer g

Various Workloads (W(B) ~ W(M))

« Even though Piggyback can increase response times greatly, Piggyback still
Improved the average throughput by about 22% compared to Baseline for W(M).

« Above all, Adaptive proves to be the best in all workloads.

80- 5
W(B) ™ W(C) WKD) B W(M) = W(B) ™ W(C) ~ W(D) B W(M)
60- o4
5 B 0
@ =Ey
n40- ©
e -
2 —_
20 21
F
0 - — . 0 I - | ’-—
Baseline Piggyback Adaptive Baseline PiggybackN\Adaptive
(a) Avg. Throughput (b) Total PCle Traffic

Figure 2. Performance analysis of transfer methods.

I
(1) Fine-Grained Value Transfer g

Various Workloads (W(B) ~ W(M))

« Even though Piggyback can increase response times greatly, Piggyback still
Improved the average throughput by about 22% compared to Baseline for W(M).

« Above all, Adaptive proves to be the best in all workloads.

If we cover most of values by piggybacking, and large values by
fast DMA, we can achieve an optimal transfer performance.

| | | 0 | o — — .
Baseline Piggyback Adaptive Baseline PiggybackN\Adaptive
(a) Avg. Throughput (b) Total PCle Traffic

Figure 2. Performance analysis of transfer methods.

Evaluation Setup

 Test Configurations:

Block The baseline block-based page-unit payload packing of NVMe SSDs.

All The All Packing Policy from KAML

Select The Selective Packing Policy proposed in BandSlim

Backfill The Selective Packing with Backfilling Policy proposed in BandSlim

0

(2) Fine-Grained Value Packing g

Various Workloads (W(B) ~ W(M))

« With packing applied, the total number of NAND writes reduces greatly.

» Backfill reduces NAND writes as much as All in small-value-dominant workloads
(W(B) & W(M)).

_600- 25-

R, W(B) W(C) W(D) Il W(M) W(B) WI(C) WD) R W(M)
=500- 1

i ~20

2400- =

U fab 15_

o300~ £

= 210-

~200- =

Z100- S

Z o] L

Block All Saea Backfill Blrin:E All Sélle; Béc]kfil
(a) Total NAND 1/0 Cnt. (b) Avg. Memcpy Time
Figure 3. Performance analysis of in-device packing policies.

The host uses the adaptive value transfer method.

(2) Fine-Grained Value Packing g

Various Workloads (W(B) ~ W(M))

 Block shows the worst performance regardless of the workload.
» Selective performs as poorly as Block in large-value-dominant situations (W(C)).

_600- 25-

R, WI{E) W(C) W(D) Il W(M) W(B) WI(C) WD) R W(M)
=500- 1

i ~20

2400- =

U fab 15_

o300~ £

= 210-

~200- =

Z100- S

Z o] L

Block All Saea Backfill Blrin:E All Sélle; Béc]kfil
(a) Total NAND 1/0 Cnt. (b) Avg. Memcpy Time
Figure 3. Performance analysis of in-device packing policies.

The host uses the adaptive value transfer method.

(2) Fine-Grained Value Packing g

Various Workloads (W(B) ~ W(M))

 Block shows the worst performance regardless of the workload.
» Selective performs as poorly as Block in large-value-dominant situations (W(C)).

_ 600+ 25-
N2 W(B) W(C) W(D) Il W(M) W(B) W(C) W(D) l W(M)
= 500- B
-E‘ EZO
2400- =
U fab 1 5_
0300— =
= =10
~200- =
Z100- Slb:
Z. B N By, Tl — - — —
0- 5 T == A = = S - i 4 — —
Block All Select Backfill Block All Select Backfill
(a) Total NAND 1/0 Cnt. (b) Avg. Memcpy Time

Figure 3. Performance analysis of in-device packing policies.

The host uses the adaptive value transfer method.

(2) Fine-Grained Value Packing g

Various Workloads (W(B) ~ W(M))

 Block shows the worst performance regardless of the workload.
» Selective performs as poorly as Block in large-value-dominant situations (W(C)).

_ 600+ 25-
N2 W(B) W(C) W(D) Il W(M) W(B) W(C) W(D) l W(M)
= 500- B
-E‘ EZO
2400- =
U __ fab 1 5_
0300— =
= =10
~200- 780 B B BE =
Z100- Slb:
Z. B N By, Tl — - — —
0- 5 T == A = = S - i 4 — —
Block All Select Backfill Block All Select Backfill
(a) Total NAND 1/0 Cnt. (b) Avg. Memcpy Time

Figure 3. Performance analysis of in-device packing policies.

The host uses the adaptive value transfer method.

(2) Fine-Grained Value Packing g

Various Workloads (W(B) ~ W(M))

 Block shows the worst performance regardless of the workload.
» Selective performs as poorly as Block in large-value-dominant situations (W(C)).

_600- 25-

R, W(B) W(C) W(D) Il W(M) W(B) WI(C) WD) R W(M)
=500- 1

i ~20

2400- =

U fab 15_

o300~ £

= 210-

~200- =

Z100- S

Z o] =

Block All Saea Backfill Blrin:E All Sélle; Béc]kfil
(a) Total NAND 1/0 Cnt. (b) Avg. Memcpy Time
Figure 3. Performance analysis of in-device packing policies.

The host uses the adaptive value transfer method.

(2) Fine-Grained Value Packing

Various Workloads (W(B) ~ W(M))

s

 Block shows the worst performance regardless of the workload.
» Selective performs as poorly as Block in large-value-dominant situations (W(C)).

Response Time (us)

180~
150-
120-

w o ©
T 2°

T

W(B) W(C)
L
Block All

WD) H W)

Select Backfill

(c) Avg. Resp. Time

30+
257
©92()-
n15-
n 10+
5-

W(B) W(C)

Blm:k

WD) Hm W(M)

Select Backﬁ]l

(d) Avg. Throughput
Figure 3. Performance analysis of in-device packing policies.

The host uses the adaptive value transfer method.

(2) Fine-Grained Value Packing g

Various Workloads (W(B) ~ W(M))

 Block shows the worst performance regardless of the workload.
» Selective performs as poorly as Block in large-value-dominant situations (W(C)).

180+ 30-
0 W(B) W(C) W(D) l W(M) W(B) W(C) W(D) l W(M)
2150- 251
®
£120- g 20-
= 20
@ 90 1;:.‘4[5
e
g 60- 2 10~
2 30 5 B
o i X
2 1 11 1 1 1
0- - = =5 VS = = =
Block All Select Backfill Block All Select Backfill
(c) Avg. Resp. Time {(d) Avg. Throughput

Figure 3. Performance analysis of in-device pacisingpeiicies.

The host uses the adaptive value transfer method.

(2) Fine-Grained Value Packing g

Various Workloads (W(B) ~ W(M))

 Block shows the worst performance regardless of the workload.
» Selective performs as poorly as Block in large-value-dominant situations (W(C)).

180~ 30+
W(B) W(C) WD) H W) W(B) W(C) W([D) H W(Mj
150-

b
1204

(S
£
|

Response Time (us)

w o ©
T P

Kops/sec
e —r,)

T TE¥
I
I I
"

I Y

| | 1 o 1
Block All Select Backfill Block All Select Backfill
(c) Avg. Resp. Time {(d) Avg. Throughput
Figure 3. Performance analysis of in-device pacisingpeiicies.

The host uses the adaptive value transfer method.

(2) Fine-Grained Value Packing
Various Workloads (W(B) ~ W(M))

O

* However, in scenarios where small values predominate, such as in W(B) or W(M),

the throughput of the Selective dips by at most 4.5% compared to the All.
» Backfill showcases the most optimal performance geross both VWR) and W(M).

180~ 30-
% W(B) ™ W(C) ©~ W(D) Bl W(M) W(B) ™ W(C) ~ W(D) B W(M)
2150- 29
el I £ o ————— N
2120- 8201 vy W TTWY
- 2
@ 90+ 2 15
S
g 60- 2 10~
3 30 D
o i X
- 1 171 I
0- = o 1 0N T o il
Block All Select Backfill Block All Select Backfill
(c) Avg. Resp. Time {(d) Avg. Throughput
Figure 3. Performance analysis of in-device pacisingpeiicies.

The host uses the adaptive value transfer method.

I
(2) Fine-Grained Value Packing g

Various Workloads (W(B) ~ W(M))

« However, in scenarios where small values predominate, such as in W(B) or W(M),
the throughput of the Selective dips by at most 4.5% compared to the All.

» Backfill showcases the most optimal performance geross both VWR) and W(M).

Each packing policy has its own strengths and weaknesses, but the
proposed approach performs better under real-world workloads.

0 L 0_]]]
Block All Select Backfill Block All Saect Backfill
(c) Avg. Resp. Time {(d) Avg. Throughput

) K
3 \

Figure 3. Performance analysis of in-device pacisingpeiicies.

The host uses the adaptive value transfer method.

Conclusion

0

I
Conclusion g

We introduce BandSlim to address the incompatibilities between

traditional block-interfaced storage protocols (e.g., NVMe) and the new
key-value interface of KV-SSDs.

The mismatch leads to excessive traffic on the PCle interconnect and
amplified NAND write 1/Os, significantly degrading performance.

BandSlim effectively resolves these issues by enabling a Fine-Grained
Value Transfer and Efficient, Fine-Grained In-Device Value Packing.

Thank You
Q&A

Presenter: Junhyeok Park
Contact: junttang@sogang.ac.kr

0

mailto:junttang@sogang.ac.kr

	슬라이드 1
	슬라이드 2
	슬라이드 3
	슬라이드 4
	슬라이드 5
	슬라이드 6
	슬라이드 7
	슬라이드 8
	슬라이드 9
	슬라이드 10
	슬라이드 11
	슬라이드 12
	슬라이드 13
	슬라이드 14
	슬라이드 15
	슬라이드 16
	슬라이드 17
	슬라이드 18
	슬라이드 19
	슬라이드 20
	슬라이드 21
	슬라이드 22
	슬라이드 23
	슬라이드 24
	슬라이드 25
	슬라이드 26
	슬라이드 27
	슬라이드 28
	슬라이드 29
	슬라이드 30
	슬라이드 31
	슬라이드 32
	슬라이드 33
	슬라이드 34
	슬라이드 35
	슬라이드 36
	슬라이드 37
	슬라이드 38
	슬라이드 39
	슬라이드 40
	슬라이드 41
	슬라이드 42
	슬라이드 43
	슬라이드 44
	슬라이드 45
	슬라이드 46
	슬라이드 47
	슬라이드 48
	슬라이드 49
	슬라이드 50
	슬라이드 51
	슬라이드 52
	슬라이드 53
	슬라이드 54
	슬라이드 55
	슬라이드 56
	슬라이드 57
	슬라이드 58
	슬라이드 59
	슬라이드 60
	슬라이드 61
	슬라이드 62
	슬라이드 63
	슬라이드 64
	슬라이드 65
	슬라이드 66
	슬라이드 67
	슬라이드 68
	슬라이드 69
	슬라이드 70
	슬라이드 71
	슬라이드 72
	슬라이드 73
	슬라이드 74
	슬라이드 75

