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ABSTRACT
The Key-Value Solid State Drive (KV-SSD) represents a significant
evolution in storage device interfaces by accommodating non-page-
aligned key-value pairs, a departure from conventional models.
However, KV-SSDs encounter challenges as their specialized data
transfer and packing requirements conflict with established storage
protocols like NVMe, which are designed around fixed memory
page units. This discord leads to inefficient data movement and
increased NAND page write I/Os, which in turn escalates network
traffic and degrades both performance and NAND efficiency. To
tackle these challenges, this paper introduces BandSlim, a novel so-
lution equipped with two methods to streamline bandwidth during
I/O transmission: (i) a fine-grained inline value transfer utilizing
NVMe commands for bandwidth-efficient value transfer, and (ii) a
selective value packing strategy combined with a backfilling policy
to reduce NAND page write I/Os. We integrated BandSlim on a
state-of-the-art FPGA-based LSM-tree KV-SSD, utilizing the Cos-
mos+ OpenSSD platform. Our comprehensive evaluations illustrate
that BandSlim achieves a remarkable reduction in PCIe traffic of up
to 97.9% and NAND page write counts by up to 98.1% compared to
the NVMe-based KV-SSD without employing BandSlim.

CCS CONCEPTS
•Computer systems organization→ Firmware; • Information
systems → Flash memory; Storage management.
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1 INTRODUCTION
Designing an efficient storage system necessitates reducing data
movement costs from the host’s memory to the storage media.
However, traditional Key-Value Stores (KVS) like RocksDB [10]
and LevelDB [11] function as middleware on top of file systems.
Consequently, user I/O requests must navigate through the kernel’s
file system and block layers to execute data reads and writes to
storage. This multi-layer traversal incurs significant memory copy-
ing and kernel context switch overheads during I/O operations. In
contrast, Key-Value Solid State Drives (KV-SSDs) [13, 21, 29] offer
a substantial reduction in these overheads. By eliminating the file
system and block layer within the kernel, KV-SSDs provide lower
latency and higher throughput compared to traditional KVSs.

Unlike block-based SSDs, one of the noteworthy advantages of
KV-SSDs is that they allow the design of I/O subsystems to han-
dle users’ variable size requests precisely and in the exact size.
This design opportunity processing I/O operations in exact size
can significantly enhance storage efficiency regarding space uti-
lization and response time. Unfortunately, to date, commercially
and academically released KV-SSDs such as Samsung KVSSD [29],
PinK [13], and iLSM-SSD [21] utilize the NVMe protocol, which
is specifically engineered for block-based storage devices. These
KV-SSDs implement the Physical Region Page (PRP) list for con-
veying payload, essentially inducing I/O amplification originating
from the size difference between the block and key-value pair.

Moreover, the misalignment of key-value pair and block size
is not the only cause of I/O amplification. KV-SSDs conceal the
same problem, which is coming from the NAND flash I/O unit.
Because typical NAND flash memory requires writing in a NAND
page unit (16 KB) larger than the block (4 KB), the I/O amplification
problem is inherent in NAND flash-based drives. However, modern
block-based SSDs effectively mitigate this issue by employing a
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NAND page buffer [5, 16, 18] using DRAM within the device. By
aligning the NAND page size to fit multiple blocks, a buffer inside
can successfully amortize the NAND page write cost over multiple
block writes with minimal cost, which essentially minimizes I/O
amplification. KV-SSDs, however, face the additional challenge of
managing byte-level offsets to accommodate multiple key-value
pairs in NAND page-sized buffer entries due to the variable nature
of the key and value sizes.

Limitations of Existing Approaches: There have been two
approaches to mitigate the amplification occurring in the KV-SSD.
One can be tackled from the host side by batching enough key-value
entries to fit the NAND page I/O semantic within the device easily.
Recently proposed KV-SSDs such as Dotori [9] and KV-CSD [27]
took this approach by implementing bulk PUT operation, which
is host-side batching. However, a fundamental issue with buffer-
ing the key-value entries on the host side is the risk of data loss
on power failure. Additionally, because the host sends a chunk of
payload packed with multiple key-value pairs, KV-SSDs that need
to index and organize each key separately face extra overhead from
unpacking them. KAML [15] tackles the problem within the device
rather than the host side. The KV-SSD shown in KAML suggests
building a log directly on the NAND page utilizing the buffer inside
the device; consequently, NAND pages form a log consisting of a
batch of multiple key-value pairs. With this approach, byte-level
offset management can be alleviated via log design. However, con-
sidering a NAND page-sized buffer is filled with key-value pairs
within the KV-SSD device, the amplification due to the misalign-
ment of the transmission unit and key-value size still occurs. To the
best of our knowledge, this study is the first comprehensive research
to identify and resolve both amplification occurring at transmission
and NAND page write in KV-SSD.

To tackle both amplifications occurring in small key-value trans-
fer and storing NANDflash pages, we introduce BandSlim. BandSlim
aims to transfer small key-value payloads with minimal PCIe traffic
overhead, thereby enhancing data transfer efficiency between the
host and KV-SSD. Additionally, BandSlim introduces the design to
minimize the number of NAND page writes required to persist key-
value pairs by packing small and large key-value records densely
into NAND pages as possible in a backfilling manner. However, note
that the design decisions BandSlimmade to meet these goals are not
against the NVMe standard. It is more of an NVMe-compatible pro-
posal to keep its various utilities from device identification to device
management. BandSlim consists of two methods: (i) Fine-Grained
Value Transfer and (ii) Efficient Fine-Grained Value Packing.

Fine-Grained Value Transfer employs an inline value transfer
mechanism that piggybacks values smaller than a memory page
size to NVMe commands using the reserved fields. We observed
that it substantially reduces data traffic over the PCIe interconnect.
However, we also observed that the response time increases rapidly
as the payload size approaches a memory page size. This is obvious
because the available space in a single NVMe command is far less
than a 4 KB page size; thus, multiple NVMe commands must be
issued as payload size increases. Thus, BandSlim also incorporates
an adaptive value transfer strategy that switches back and forth
piggybacking and Direct Memory Access (DMA) to take balance
between reduced PCIe traffic and response time.
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Driver
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Key-Value StorePCIe
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(b) NVMe
Controller

Host

Key-Value
API
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System
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Figure 1: Comparison of software stacks for (a) Host-side
Key-Value Store and (b) Key-Value Solid State Drive.

Efficient Fine-Grained Value Packing implements a Selective Pack-
ing with Backfilling Policy specifically designed for better NAND
page utilization. BandSlim specifically locates small payloads to fill
the gap formed by the page-aligned payload, which is transferred
by DMA prior to the small payload. This design choice reflects re-
strictions in some real-world in-device DMA engines, which require
that the transfer size and destination address within the device be
aligned with a 4 KB page size. To provide compatibility across vari-
ous DMA engines as other kernel or device drivers does, BandSlim
is built on the assumption that some payloads are needed to be
placed 4 KB aligned offset with 4 KB aligned size [8, 26, 28, 31].

For evaluation, we implemented BandSlim in a state-of-the-art
FPGA-based KV-SSD [22] built on the Cosmos+ OpenSSD plat-
form [19]. We demonstrated that BandSlim reduces PCIe traffic
by up to 97.9% and issues up to 98.1% fewer NAND page writes
compared to the KV-SSD without BandSlim.

The contributions of this paper are summarized as follows:

• Identified traffic amplification in host-device interconnect,
specifically in KV-SSDs, and proposed NVMe-compatible
design to minimize bandwidth waste during small key-value
pair transfer.

• Demonstrated the trade-off between PCIe traffic and re-
sponse time in fine-grained value transfer and effectively
resolved it using an adaptive value transfer method.

• Proposed small payload packing design with a backfilling
approach to increase NAND page write efficiency while con-
sidering the DMA engine’s page-alignment restriction.

2 BACKGROUND AND MOTIVATION
2.1 LSM-tree-based Key-Value Solid State Drive
Key-Value Solid State Drives (KV-SSDs) have renovated the storage
interface by changing the unit of I/O transactions from the tradi-
tional block to key-value [15, 29]. By providing Key-Value Store
(KVS) functionalities at the device level, KV-SSDs enabled a thinner
storage software stack, which excludes traditional file systems and
block layers, thereby significantly reducing overhead caused by
multiple layers of space management.

One of the dominant KVS designs employed in recent KV-SSD
studies is the Log-Structured Merge-tree (LSM-tree) with the key-
value separation [7, 13, 21, 22, 27]. The LSM-tree is a data structure
already used in many mature host-side KVSs, such as RocksDB [10]
and LevelDB [11] due to its strength in processing write-intensive
workloads. In LSM-tree’s original form, a key-value pair is stored
together in the same file called SSTable. However, as LSM-tree’s
maintenance operation called a compaction job is pointed out to be
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Figure 2: Data flow of two cases of key-value pair transfers with sub-4 KB payload and over-4 KB payload regarding NAND
page buffer management and PCIe traffic bloating in LSM-tree-based Key-Value Solid State Drives.

a cause of significant write amplification, which degrades perfor-
mance and storage devices endurance, a key-value separation has
been proposed [23]. The key-value separation design summarizes
separating values from LSM-tree and storing to Value Log (vLog), as
its name suggests. With this design, the compaction, which is essen-
tially responsible for reading SSTables, merging them, and writing
only live key-value pairs to new SSTable files, no longer repeatedly
rewrites live values, thus reducing the write amplification.

In comparison with traditional host-side KVS depicted in Fig-
ure 1(a), Figure 1(b) shows the storage stack that is using KV-SSDs
with LSM-tree and key-value separation [13, 21, 22, 27] (hereafter
referred to simply as KV-SSD). Since the KV-SSD can bypass the
file system and block layers, it consists of user-level key-value
APIs, a key-value device driver, and controller based on protocols
like NVMe, and an in-storage LSM-tree-based KVS. The user-level
key-value API offers point and range queries, namely PUT, GET,
SEEK, and NEXT. The size of the key and value in these APIs is
handled as arbitrary length, not in block units (key-value interface).
A pair of key and value address is stored in the LSM-tree, and a
value is stored in the vLog. The vLog of KV-SSD is a linear, logi-
cal NAND flash address space. This space is further divided into
multiple logical NAND pages. Each value is appended to the vLog
sequentially, filling logical NAND pages. Note that it fills logical
NAND pages which are mapped to physical NAND pages by the
FTL (Flash Translation Layer). The entries of the LSM-tree point to
corresponding values inside the vLog.

2.2 NVMe Key-Value Storage Device Interface
Key-Value Pair Transfer Mechanism: The NVMe protocol has
introduced a key-value command set for KV-SSDs [25]. Within
the NVMe key-value interface, when writing key-value pairs, the
NVMe driver stores a key and metadata in the reserved fields of the
NVMe command. The payload, which is the value in this context, is
transferred via the Physical Region Page (PRP) as the block interface
part of NVMe specification does. The PRP is a linked list whose
entry describes the addresses of physical memory pages of the host
memory. One or more memory pages where the value is stored
are specified to be transferred. Subsequently, the driver inserts the
NVMe command into the submission queue and rings the doorbell
to notify the device of the write request. The NVMe controller
fetches the command from the queue, interprets it, and identifies the
pages for copying from the received PRP list. To initiate the value

transfer, the controller triggers a Direct Memory Access (DMA)
transaction, which copies pages from the host memory to the device
memory. The controller later inserts the received key to the memory
component of LSM-tree, MemTable, and writes the value to the
vLog (see Figure 2). The reverse operation, involving the transfer
of values from the KV-SSD to the host, follows a similar process.

NAND Page Buffer Management: In alignment with NVMe
SSDs, NVMe KV-SSDs incorporate a NAND page buffer [16] within
the SSD’s battery or capacitor-backed DRAM (see Figure 2). Each
buffer entry serves as a persistent write buffer for NAND pages.
When inserting values into the vLog, multiple values can be packed
into a single buffer entry if the size of each value is smaller than
the NAND page. When the buffer entry can no longer hold values,
its contents are written to the physical NAND page which is FTL-
mapped to the current logical NAND page of the vLog region.

2.3 PCIe Traffic Amplification and NAND Write
Amplification in KV-SSD

As in typical KVSs, the key and value size are variable and not
necessarily aligned to a memory page. According to Meta, RocksDB
in a production environment experiences the size of values nearly
not reaching a hundred bytes on average [3], which is far less than
the 4 KB memory page size. Consequently, a KV-SSD must be capa-
ble of effectively handling requests for such variable-sized, small
values. However, a naive adoption of the current NVMe standard
to support the key-value interface causes inefficiencies in value
transfer and NAND I/O utilization as follows:

Problem#1–Bloated PCIe Traffic: This problem occurs be-
cause the NVMe key-value interface adheres to the same procedure
as the original block-interfaced NVMe protocol when transferring
values to or from the device [24, 25]. Specifically, the NVMe’s data
transfer method, PRP, restricts DMA transfers to occur in units of 4 KB,
a size of memory page [6]. This restriction aligns with the historical
evolution of the block storage stack, which has evolved to align
with memory page units [8, 26, 28, 31].

As shown in Figure 2, consider a scenario where the value size is
32 bytes (❶). In this case, one 4 KB memory page that temporarily
holds the value is specified by the PRP, and a DMA copy of 4 KB
occurs. On the other hand, if the value size slightly exceeds the
memory page size, such as (4K+32) bytes (❷), two memory pages
are required to accommodate the value. Consequently, the DMA
facilitated by the PRP transfers 8 KB of data. This bloated data traffic
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Figure 3: Total PCIe Traffic with Average Response Time and
PCIe Traffic Amplification Factor for varying value sizes.

on PCIe can lead to a significant increase in energy consumption
and power usage of the system, ultimately elevating the total cost of
ownership [2]. This is why modern data centers prioritize reducing
data movement costs as a primary mission [4, 30].

Problem#2–NAND Write I/O Amplification: The second
issue is that the packing of received objects into NAND pages within
NVMe SSDs also occurs in units of 4 KB memory pages [5, 18]. The
NAND page buffer in NVMe SSDs packs data along 4 KB boundaries
as depicted in Figure 2. If the size of a NAND page is 16 KB, data
from the host can fill one NAND page buffer entry with a maximum
of four write requests (for example, with a value size of 32 bytes).
If the value size is marginally larger than one memory page, such
as (4K+32) bytes, only two write requests are sufficient to fill one
buffer entry, beyond which it cannot be further filled. This in-device
page-unit packing clearly clashes with KV-SSDs, leading to severe
NAND write amplification.

The NVMe protocol still enforces memory page unit payload
transfers tailored to and originated from the traditional block in-
terface for the new key-value interface of KV-SSDs, and further
executes memory page unit payload packing over the NAND page
buffer within the device, just like block-based SSDs.

2.4 Experimental Analysis of Amplification
Bloated PCIe Traffic: We measured PCIe traffic from a host to
a device by issuing 1 million write requests with variable-sized
values using a state-of-the-art NVMe KV-SSD [22]. Experimental
setup details are in Section 4.1. We utilized the Intel Performance
Counter Monitor (PCM) [14] to track PCIe traffic.

Figure 3(a) illustrates the total data transferred over PCIe during
the experiments. Notably, PCIe data transfer exhibits a doubling in
traffic volume at precise 4 KB value size boundaries. For instance,
the total data transferred for 1 KB and 4 KB value sizes is about
4 GB, showing that transfer volumes remain constant for value
sizes up to 4 KB. This pattern repeats for value size ranges of 5-
8 KB, 9-12 KB, and 13-16 KB, aligning the total PCIe traffic with
that of the smallest multiple of 4 KB covering the value size. We
also recorded the average transfer response times, which revealed a
similar cascading pattern as seen in PCIe traffic shown in Figure 3(a).

The issue intensifies with smaller values. We assessed the Traffic
Amplification Factor (TAF), the ratio of PCIe traffic to the size of the
requested data, with value sizes set at 32, 64, 128, 256, 512 bytes, and
1 KB. As depicted in Figure 3(b), each transfer consistently sends
a 4 KB memory page, significantly amplifying the data transfer
volume. For instance, transferring a 32-byte value generates around
4 KB of traffic, roughly 130 times the size of the data requested.
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Figure 4: Total NAND Page Writes with Average Response
Time andWrite Amplification Factor for varying value sizes.

NANDWrite I/O Amplification:We measured write response
times and the number of written NAND pages using the same work-
loads as the previous experiments, with results shown in Figure 4(a).
Write response times were over 10 times longer than transfer re-
sponse times, mainly due to NAND flash I/O times. Surprisingly,
these extended NAND flash I/O durations did not diminish the
spikes at 4 KB boundaries observed in prior experiments but rather
exacerbated them, leading to more severe page-unit cascades. The
count of written NAND pages, also depicted in Figure 4(a), shows a
significant increase at each memory page boundary.

We assessed theWrite Amplification Factor (WAF), defined as the
ratio of the data written to NAND flash to the size of the received
value. The results, shown in Figure 4(b), reveal that WAF closely
mirrors TAF, despite including non-value-related NAND writes like
in-device LSM-tree compaction. This suggests that the amplification
due to memory page alignment during transfers also extends to
writing values from device memory to NAND flash.

2.5 Exploring Escape-from-Block Strategies
The NVMe protocol currently offers two data transfer methods: the
PRP and Scatter-Gather List (SGL) [24]. As the PRP list describes
the payload in host memory in a list of physical pages, it has an
inherent limitation in describing byte granular key and value pairs.
In addition to this, the assumption that the payload is multiple
blocks guided the NVMe storage stack to be optimized for block-
size transfer from memory allocations for DMA in the host to the
DMA engine within the device. On the other hand, SGL can support
multiple variable-sized DMAs across scattered memory segments.
However, it has been reported that the cost of enabling the SGL
outweighs the benefit for I/O smaller than 32 KB [1]. Consequently,
the Linux kernel establishes a minimum threshold for data trans-
ferred via SGL at 32 KB [32], indicating that using SGL for small
value transfers is not advisable.

Given these circumstances, we have focused on utilizing NVMe
commands to escape the key-value transfer from the traditional
block-based payload transfer mechanism. Considering that the
typical size of values from real-world KVS workloads rarely ex-
ceeds a hundred bytes and is often below 64 bytes [3], NVMe
command (64 bytes [24]) has an opportunity to cover a signifi-
cant portion of value transfer in real-world workload. In other
words, we can employ NVMe commands to make fine-grained and
bandwidth-efficient key-value pair transfers.

To escape from the block-based NAND page buffer management,
which amplifies NAND write I/Os when handling variable-sized
values, KAML [15] proposed the batching for multiple values and
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stored them at the NAND page level in a log-fashion. However, the
design for efficiently packing values that are smaller than the block
size was not detailed enough to adapt LSM-tree-based KV-SSDs.
Moreover, some DMA engines in storage devices, including our
testbed, require that the transfer size and destination addresses be
page-aligned [20]. Consequently, device drivers are typically de-
signed to accommodate this requirement [26, 31]. Thus, the simple
buffering approach from KAML can necessitate excessive mem-
ory copies when handling large values. To address this, we have
devised a strategy where large, infrequent values are sent to the
device using a traditional method, while the smaller, more common
values are interspersed between them within NAND pages.

3 DESIGN OF BANDSLIM
3.1 Software Architecture Overview
Figure 5(a) illustrates the software architecture of BandSlim. The
modules in black are key components of BandSlim.

• BandSlim Key-Value Driver: This component piggybacks
values onto NVMe commands, achieving PCIe traffic gener-
ated close to the requested value size (§3.2).

• BandSlim Key-Value Controller: This component packs
received values into the NAND page buffer entry in a fine-
grained manner. It features the Selective Packing with Back-
filling Policy to address the memory copy overheads that
occur when packing relatively large values transferred via
PRP-based DMA (§3.3).

• LSM-tree with Fine-Grained Value Addressing: A key-
value separated LSM-tree storage engine featuring fine-
grained value addressing over the vLog (§3.4).

3.2 Fine-grained Value Transfer over NVMe
To enable the fine-grained value transfer over NVMe via NVMe-
command-piggybacking, we reviewed the structure of the NVMe
command. As shown in Figure 6(a), if traditional transfer methods
are not used, dword4-9 (24 bytes), which were originally desig-
nated for specifying memory pages for DMA transfers, can be
repurposed for piggybacking values. Additionally, the 8 bytes of
reserved dword12-13 can also be used for piggybacking. Plus, the
reserved 2 bytes and 1-byte for specifying vendor-specific options
in dword11 can be used as well. Thus, a maximum of 35 bytes can
be repurposed. BandSlim utilizes these fields for piggybacking and
inline shipping of values by embedding them into these fields.

To handle values that cannot be covered by a single NVMe com-
mand submission, we classify piggybacking commands into two
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Figure 6: NVMe key-value write and transfer command in
BandSlim features values piggybacked in gray-colored fields.
types using separate opcodes: (i) write command and (ii) transfer
command. The former serves as the initial command. It contains
key and metadata like key size, value size, and more, similar to
the original key-value write command. It allows piggybacking of
values of up to 35 bytes. The latter is a command solely intended
for transferring the remaining bytes of the value. As depicted in
Figure 6(b), since the key and value size are already sent to the de-
vice through the first command, write command, we can utilize all
fields of transfer command for piggybacking, except for essential
fields such as opcode. Consequently, all the remaining dwords (56
bytes) are utilized for piggybacking in transfer command.

Therefore, when BandSlim transfers a key-value pair and cannot
send the entire value in a single command submission, it uses the
transfer command as trailing commands to deliver the remain-
ders to the device in 56-byte increments. Figure 5(b) illustrates the
transfer of value with a size of 128 bytes using the piggybacking
transfer. It requires 3 NVMe commands (total 192 bytes) to transmit
the value. With the need to transmit at least one command as well,
compared to the traditional approach that generated 4 KB traffic
for value transfer, we can reduce approximately 78.4% of the traffic.

Adaptive Value Transfer Method. As the value size increases,
NVMe-command-piggybacking-based value transfer can involve a
significant number of transfer commands. In such cases, due to
the accumulation of overheads in generating NVMe commands and
synchronously handling them within the device, the transfer time
becomes inferior compared to the conventional PRP-based value
transfer (§4.2). Furthermore, when the value size marginally ex-
ceeds the memory page size, for example, (4K+32) bytes, employing
a hybrid approach can be more efficient than processing it solely
through piggybacking or PRP-based page-unit DMAs. We can trans-
fer the first 4 KB via page-unit DMA and the remaining 32 bytes
via piggybacking on transfer command. Even though BandSlim
primarily targets workloads with small value sizes, it must also be
capable of effectively handling values of exceptional, large sizes.

To tackle these issues, BandSlim utilizes a threshold-based re-
active method that selects the most suitable transfer method
from NVMe-command-piggybacking-based, PRP-based, and hy-
brid transfers based on the size of the value. This decision-making
process is supported by exploratory runs conducted using synthetic
benchmarks, where users identify thresholds and configure Band-
Slim accordingly. To facilitate this, BandSlim provides benchmarks
for determining these thresholds (§4.1). During the benchmark runs,
various value sizes ranging from 4 bytes to 8 KB are tested through
millions of PUT commands to compare transfer times.

We establish two key performance thresholds from these tests:
(i) 𝛼 × 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 marks the size at which piggybacking becomes
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Figure 7: Description of Selective Packing Policy and Selective
Packing with Backfilling Policy.

less efficient than PRP-based transfers. (ii) 𝛽 × 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 identifies
where PRP-based transfers outperform hybrid transfers for values
sizes slightly greater than multiples of 4 KB. These thresholds are
dynamically adjusted using coefficients 𝛼 and 𝛽 , which are scaled
based on user preferences for reducing PCIe traffic. For users priori-
tizing response time, both 𝛼 and 𝛽 can be set to 1. For those valuing
traffic reduction, 𝛼 and 𝛽 can be increased to favor piggybacking
and hybrid methods. Based on this approach, BandSlim ensures
efficient handling of value sizes ranging from sub-page to large.

3.3 In-device Fine-grained Value Packing
3.3.1 All Packing Approach and Its Limitations. To design
an efficient and fine-grained packing policy for the NAND page
buffer management of KV-SSDs, we reviewed the simple buffering
approach mentioned in KAML [15], which we will refer to as an
All Packing Policy. We introduced a Write Pointer (WP) to track the
current write offset within the NAND page buffer and implemented
the All Packing Policy. For values transferred via NVMe-command-
piggybacking, the controller fetches commands and extracts the
value from the piggybacking fields. Then, it performs a memory
copy of the extracted value to the address pointed by the WP, and
updates the WP. Trailing transfer commands are processed in
the same manner, sequentially updating the WP and packing the
piggybacked value fragment in the buffer. On the host side, the
driver submits transfer commands to the submission queue where
the write command for that value was inserted, ensuring that the
piggybacked value fragments are processed in FIFO order.

For values transferred via page-unit DMA or a hybrid approach1,
packing them into the NAND page buffer requires a memory copy
due to the aforementioned page alignment restriction of DMA
destination addresses (§2.5). When the controller executes page-
unit DMA, the destination address should be set, for instance, to
the closest page-aligned address following the current WP. If the
WP and the destination address coincide, we can skip the memory
copy. If not, these values are memory copied to the WP in the same
manner as piggybacked values are processed.

3.3.2 Selective Packing Policy. The All Packing Policy aims to
minimize NAND page writes as much as possible. However, since
values transmitted via page-unit DMA often exceed average size
due to adaptive methods, excessive memory copying can lead to
overheads. Given the resource constraints of storage devices, large
memory copies can significantly slow down operations and delay
other requests. To tackle these challenges, we present a Selective
Packing Policy. When the controller receives a value transmitted via
page-unit DMA, it updates the WP to the end of the value, similar

1Hereafter, we will refer to both transfer modes collectively as page-unit DMA.

to the traditional approach, without performing packing. It is par-
ticularly predicated on the assumption that, under real-world KVS
workloads, requests to write large values are rare. Even at the ex-
pense of some spatial loss, this method can be valid if the overhead
of copying large values exceeds that loss. For requests transmitted
via piggybacking, values are still packed. In other words, the Selec-
tive Packing Policy only packs values transmitted via piggybacking.

Figure 7(a) illustrates this policy. The figure assumes a scenario
with four mixed key-value write requests of small and large values,
labeled 𝐴, 𝐵, 𝐶 , and 𝐷 . Requests 𝐴, 𝐵, and 𝐷 transfer values using
the piggybacking method. In contrast, request 𝐶 transfers its value
via page-unit DMA. Under the Selective Packing Policy, values of
requests 𝐴 and 𝐵 are compactly packed following the WP, while
the value of 𝐶 is positioned at the next page-unit boundary closest
to the WP. The WP is then updated to the address following the
end of 𝐶’s value, and 𝐷’s value is packed at this updated location.

3.3.3 Selective Packing with Backfilling Policy. In workloads
where small values are dominant, the Selective Packing Policy can
exhibit equivalent performance to the All Packing Policy. However,
if the workload occasionally involves values transferred via page-
unit DMA, this can lead to internal fragmentation within NAND
pages. Therefore, we present the Selective Packing with Backfilling
Policy, aiming to address both the issue of NAND page internal
fragmentation and the memory copy issue for packing large values.

Figure 7(b) depicts this policy. The process up to handling request
𝐶 is the same as the previous one. However, in here, the WP is
not updated after receiving the DMA-transferred value. Instead, it
introduces backfilling, where the value of request 𝐷 continues to
be packed at the original WP, filling up the empty space. To do this,
an additional data structure is needed to track values transferred
via page-unit DMA, to ensure the current WP avoids these values.
Thus, we introduce a DMA Log Table (DLT) in a separate space
of device memory from the NAND page buffer, where it records
the destination address and value size upon each page-unit DMA
operation. The DLT is a circular queue, the head of which always
points to the oldest unconsumed entry, moving to the next oldest
once consumed. Whenever the controller packs a value transferred
via piggybacking, it checks if the current WP plus the current value
size exceeds the oldest DLT entry’s destination address among the
unconsumed entries. This reference process has a time complexity
of O(1). If the WP exceeds it, the controller sets a new address by
adding the DMA-transferred value size to the destination address,
updates the WP to that address, and repeats the process.

However, the DLT necessitates extra memory space, which could
increase the design costs. To save space, BandSlim records only the
logical NAND page number and memory page offset instead of the
full address, reducing the bit count needed. For instance, a 1 TB
NAND space with 16 KB page size requires only (26+2) bits instead
of 40. Plus, given that NAND page buffer entries are limited, we
capped the maximum number of entries to match (e.g., 512 entries).
If we allocate 4 bytes for specifying value size in each DLT entry,
the upper bound of the size of memory space for DLT is only 4 KB.

3.4 Fine-grained Value Addressing over vLog
The fine-grained value packing necessitates a byte-level addressing
over the vLog, increasing the bit size required for addressing fields
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Table 1: HW/SW specifications of the OpenSSD platform.
SoC Xilinx Zynq-7000 with ARM Cortex-A9 Core
NAND Module 1TB, 4 Channel & 8 Way
Interconnect PCIe Gen2 ×8 End-Points

Table 2: HW/SW specifications of the host node.
CPU Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz (32 cores)
Memory 384GB DDR4
OS Ubuntu 22.04

in the LSM-tree. This increase in bit size for vLog addressing fields
seems significant, especially since SSDs typically strive to minimize
space usage due to their limited memory capacity, which often
leads to reduced bit sizes in addressing fields [17]. However, even
though the size of MemTable increases, it remains constant due to
LSM-tree flushes and resets. Despite the slight increase in memory
requirements, we believe that this is a reasonable compromise for
the advantages that fine-grained value packing offers, such as more
efficient space utilization and improved performance of KV-SSDs.

4 EVALUATION
4.1 Evaluation Setup
We implemented BandSlim by extending the state-of-the-art NVMe
KV-SSD [22] based on Cosmos+ OpenSSD platform [19]. The partial
source code for the BandSlim key-value driver and controller is
made publicly accessible2, with the intention of promoting active
development within the field of KV-SSDs. The SoC of the platform
operates the BandSlim controller, the PCIe interface controller, the
DRAM controller, and the NAND flash controller. The host system
runs the BandSlim driver. Table 1 and Table 2 present the HW/SW
specifications of our setup.

For performance evaluations, we slightlymodified db_bench [12],
a widely recognized benchmarking tool used in RocksDB [10]. We
enabled db_bench to send NVMe key-value commands to the Cos-
mos+ OpenSSD platform through the NVMe passthrough.

We conducted various patterns of the workloads to verify our
proposed design. The description of the workloads is as follows.

• Workload 𝐴: This is db_bench’s fillseq for a write pattern
where the key is sequential. The value size does not change.

• Workload 𝐵 (𝑊 (𝐵)): This writes 1 million random key-value
pairs with value sizes of 8 bytes or 2 KB at a 9:1 ratio.

• Workload 𝐶 (𝑊 (𝐶)): This is similar to𝑊 (𝐵), but with the
value size ratio reversed to 1:9 for 8 bytes and 2 KB values.

• Workload 𝐷 (𝑊 (𝐷)): This workload writes values of sizes
(8, 16, 32, 64, 128, 256, 512 bytes, 1 KB, and 2 KB) in random
order, totaling 1 million, with each size having an equal ratio.

• Workload𝑀 (𝑊 (𝑀)): db_bench’smixgraph All_random [3].
It reflects real-world characteristics with a maximum value
size of 1 KB and almost 70% of values being under 35 bytes.
We have modified mixgraph to issue only 1 million PUTs.

In all experiments, we used 4-byte unique keys generated by a
hash function with a random seed. The keys were inserted into the
corresponding fields of the NVMe command (see Figure 6).

We conducted evaluations for the following designs.
• Baseline: the state-of-the-art NVMeKV-SSD [22]. It employs
the PRP-based page-unit value transfer and NAND page

2https://github.com/lass-lab/bandslim
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Figure 8: Measurement of Total PCIe Traffic with Average
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buffer management from NVMe SSDs. We clarify that other
state-of-the-art systems like KV-CSD [27], also follow this.

• Piggyback: transfers values only through piggybacking.
• Hybrid: transfers values using only hybrid transfer method.
• Adaptive: transfers values using the adaptive method.
• Packing: maintains transfers using only PRP-based page-
unit DMAs, while performing fine-grained value packing.

• Piggy+Pack: transfers values using only piggybacking
method and performs fine-grained value packing.

• Block, All, Select, and Backfill: To compare different pack-
ing policies, they represent the baseline,All Packing, Selective
Packing and Selective Packing with Backfilling in order.

4.2 Effects of Fine-grained Value Transfer
We disabled NAND I/O to demonstrate the effects of fine-grained
value trasnfer.We ran theWorkload𝐴 for 1million unique key-value
pairs across various value sizes. Additionally, to see the impact of
fine-grained value transfer on performance, we also measured the
average transfer response time.

Figure 8 shows the results of traffic measurements. As expected,
the Baseline, which performs page-unit DMA, shows the same PCIe
traffic for all value sizes below one memory page size (4 KB). The
Piggyback, on the other hand, dramatically reduces the PCIe traffic
imposed on the interconnect for small values under 1 KB in size.
For example, in the 4 bytes to 32 bytes cases, we can observe that
Piggyback reduces traffic by up to 97.9% compared to the Baseline.
Meanwhile, as the value size increases with piggybacking applied,
the network traffic begins to increase due to the addition of trailing
commands. NVMe command submission involves not only a 64-byte
entry but also doorbell ringing by the driver for notification, and
tail pointer read by the controller for submission queue fetch [24].
On the other hand, PRP-based DMA involves only one submission
and tail pointer read, and doorbell ringing, with the rest being data
transfer traffic via page-unit DMA. Therefore, while the Piggyback
shows significantly less traffic for smaller value sizes, as the value
size increases, the addition of multiple trailing commands leads to
an increase in traffic. This increase continues until the total traffic
approaches the Baseline at 2 KB and then exceeds it at 4 KB.

Figure 8 also shows the response time results. The Piggyback
shows a response time that is approximately a half of the Baseline
for cases of 32 bytes and below. However, as observed in the PCIe
traffic, for the 64 bytes case, the transfer response time becomes
almost identical due to the addition of trailing commands. For cases
of 128 bytes and above, where more trailing commands are attached,
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Figure 10: Performance analysis of transfer methods including the adaptive value transfer throughWorkloads 𝐵, 𝐶, 𝐷 , and𝑀

a significant performance degradation can be observed. Despite
the PCIe traffic being much reduced compared to the Baseline, the
reason for such results starting from 128 bytes is because the trans-
mission of NVMe commands in our implementation is synchronous
and serialized. In our environment, when a command is submitted
by the driver, an NVMe passthrough is used, which mandatorily
handles only one command at any given time. Thus, no subsequent
commands can be sent until the controller signals completion. This
results in round-trip overhead, significantly reducing performance.

Effects of Hybrid Value Transfer. To examine the effective-
ness of hybrid transfer for adaptive approach, we set the value sizes
from (4K+4) bytes to (4K+4K) bytes, doubling the trailing bytes
from 4 to 4 KB after 4 KB, and conducted the same experiments
with Workload A. Figure 9(a) shows the PCIe traffic. Hybrid, which
transfers the first memory page using page-unit DMA and the rest
via piggybacking, proves to be the optimal choice in terms of traffic
up to 6 KB among the three. In the case of Piggyback, it uses less
traffic than Baseline, which transfers two memory pages, up to 1 KB,
but shows a sharp increase thereafter, as observed in Figure 8.

Figure 9(b) shows the transfer response times. As expected, the
response time for Piggyback is significantly worse. The response
time of Hybrid shows only a slight decrease compared to Baseline
from (4K+4) bytes to (4K+64) bytes, but it is still lagging behind
(1.4% lower at maximum). Thus, while Hybrid significantly reduces
PCIe traffic compared to Baseline, it does not improve performance.
However, if reducing traffic is a priority for the user, this can be
considered highly effective. This could be reflected by setting the
coefficient 𝛽 greater than 1. However, we set all coefficients for
adaptive value transfer used in the subsequent experiments to 1.

Effects of Adaptive Value Transfer.We analyzed the perfor-
mance effects from enabling adaptive value transfer, usingWorkload
𝐵,𝐶 ,𝐷 and𝑀 . The𝑊 (𝐵) represents situations with a dominance of

small values, and the𝑊 (𝐶) represents a dominance of large values.
The𝑊 (𝐷), on the other hand, represents a balanced presence of
varying sizes of values. The𝑊 (𝑀), as explained, represents a read-
world pattern of KVS workload. We compared the Baseline with
Piggyback and Adaptive. In Adaptive, the transfer method shifts
from piggybacking to page-unit DMA at 128 bytes. This threshold
is set based on the transfer response time results shown in Figure 8.

Figure 10(a) and Figure 10(b) show the performance comparison
of the three transfer methods for each workload. Piggyback shows
the worst performance across workloads 𝐵, 𝐶 and 𝐷 . Especially in
the large-value-dominant𝑊 (𝐶), performance of Piggyback dras-
tically deteriorates. The Baseline shows better performance under
these workloads. This can be explained by the overhead created
by trailing commands for transferring exceptional, large values.
Surprisingly, however, Piggyback improved response time by about
22% compared to Baseline for𝑊 (𝑀), and improved throughput as
well. This demonstrates that Piggyback alone can achieve improved
performance compared to Baseline in real-world scenarios. In any
situation, however, Adaptive proves to be the best in all workloads.
In𝑊 (𝐷), where small and large values are evenly mixed, or𝑊 (𝐵),
where small values are dominant, Adaptive shows a significant
performance improvement over the other two methods.

Figure 10(c) shows the results of PCIe traffic measurements. As
expected, Piggyback reduces PCIe traffic the most. In the case of
𝑊 (𝑀), it achieves a dramatic 97.9% reduction in PCIe traffic com-
pared to Baseline. In contrast, Adaptive slightly sacrifices PCIe traf-
fic reduction in favor of performance improvement. In the case
of𝑊 (𝑀), for example, it achieves a 93.3% reduction in traffic but
shows a 12% improvement in throughput compared to Piggyback.
For𝑊 (𝐶), Adaptive generates 18% more traffic than Piggyback, but
increases the throughput by nearly 13 times, and improves the
processing rate by about 2% compared to Baseline.
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Figure 12: Performance analysis of in-device packing policies. The driver transfers values using the adaptive value transfer.

Figure 10(d) shows only the Memory-Mapped I/O (MMIO) traf-
fic generated out of the PCIe traffic presented in Figure 10(c). The
MMIO traffic represents the total number of bytes transmitted to the
device each time the host driver rings the doorbell for NVMe com-
mand submission. An increase in the host’s MMIO traffic implies
more engagement of the host CPU. The host CPU keeps access-
ing the PCIe address space while transferring values to the device
by piggybacking. As a result, the Piggyback shows a significant
amount of MMIO traffic as the value size increases (𝑊 (𝐶)). On the
other hand, the Baseline maintains a constant amount of MMIO
regardless of the workload, as it always exchanges data with a sin-
gle command. This again demonstrates the need for an adaptive
approach in fine-grained value transfer if the target workload can
frequently involve values larger than the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1.

4.3 Effects of Fine-grained Value Packing
To evaluate the effects of fine-grained value packing, we enabled
NAND I/O this time. We ran Workload 𝐴 for 10 million unique
key-value pairs across various value sizes. In this experiment, we
used the All Packing Policy. We measured the NAND page I/O count.
Figure 11(a) shows the results. Compared to the Baseline, Packing
and Piggy+Pack showed dramatically reduced I/O counts for small
values. In the case of 4 bytes to 32 bytes, packing reduced NAND
writes by 98.1%. Note that Selective Packing can achieve the same
effects in these cases. This reduction in NAND write counts has a
significant impact on performance. Figure 11(b) shows the write
response time. Regardless of which transfer mode was used, the ap-
plication of fine-grained packing significantly reduced the response
time. For example, at 32 bytes, the response time was reduced by
67.6%. In cases where the piggybacking transfer was also applied,
an additional reduction of about 4.2% in response time was ob-
served at 32 bytes case. However, similarly, due to the serialization,

the response time of Piggy+Pack increases sharply from 128 bytes
onwards since it transfers values using only piggybacking.

Next, we conducted a comparative analysis of write performance
according to the packing policy. The host driver used the adaptive
value transfer method. We used Workloads 𝐵, 𝐶 , 𝐷 and 𝑀 . Fig-
ure 12(a) and Figure 12(b) compare the average response time and
throughput when applying each packing policy for the workloads.
The baseline, Block, shows the worst performance regardless of
the workload. Meanwhile, the Selective Packing Policy performs as
poorly as Block in large-value-dominant situations (𝑊 (𝐶)). This
drop is due to this policy’s adherence to page alignments to avoid
memory copy. Similarly, the Selective Packing with Backfilling Policy
also experiences diminished performance in𝑊 (𝐶) due to the con-
strained size of the in-device NAND page buffer. When large values
arrive via page-unit DMA, as in𝑊 (𝐶), and these values are smaller
than 4 KB (2 KB of𝑊 (𝐶) for example), fragmentation occurs.

The same rationale applies to the results observed in𝑊 (𝐷). In
situations where values of considerable size, yet way smaller than
the closest multiple of memory pages (2 KB for example), occur
frequently or abundantly, theAll Packing Policy emerges as themost
optimal among the four. However, in scenarios where small values
predominate, such as in𝑊 (𝐵) or𝑊 (𝑀), the throughput of the
Selective Packing dips by at most 4.5% compared to the All Packing
which instead requires higher in-device CPU engagements (will
be discussed). Furthermore, the Selective Packing with Backfilling
showcases the most optimal performance across both𝑊 (𝐵) and
𝑊 (𝑀). It achieved a processing rate up to approximately 7% higher
than All Packing. The backfilling policy performs less efficiently
than the All Packing in workloads containing a significant number
of large-sized values that need to be transmitted via page-unit DMA,
as it incurs performance degradation due to the lower NAND space
utilization (see Figure 12(c)). However, in real-world workloads
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dominated by significantly small values, such as𝑊 (𝑀), it efficiently
stores occasional large values without memory copying, thus being
the most optimal approach. The Selective Packing can also achieve
performance equivalent to the All Packing in such workloads.

Figure 12(d) shows the average memory copy time. It is true
that despite all other packing policies inherently involving memory
copying when handling piggybacked values, the All Packing Policy,
which copies memory for all large values, shows a significantly
higher memory copy time. Especially, as the proportion of large
values increases, i.e., in the order of𝑊 (𝑀),𝑊 (𝐵),𝑊 (𝐷),𝑊 (𝐶),
the memory copy time also increases. In situations where there are
numerous large-sized values that need to be transmitted via page-
unit DMA, it is indeed a rational choice to opt for the All Packing
Policy, as the memory copy overhead becomes inevitable without
employing DMA engines that can support non-page-aligned access
to the device memory. However, in workloads where such large val-
ues occur exceptionally rarely, we can optimize without incurring
this memory copy overhead by employing a selective approach. It
is important to note that we can design a controller that effectively
adapts to any workload by integrating the strengths of both.

5 CONCLUSION
In this paper, we introduce BandSlim, a solution designed to address
the incompatibilities between traditional block-interfaced storage
protocols (e.g., NVMe) and the new key-value interface of KV-SSDs.
This mismatch leads to excessive traffic on the PCIe interconnect
and amplified NAND write I/Os, significantly degrading perfor-
mance. BandSlim effectively resolves these issues by enabling a
fine-grained value transfer and efficient in-device value packing.
Our evaluations demonstrate that BandSlim significantly reduces
network traffic during value transfers by up to 97.9% and reduces
NAND page write counts by up to 98.1%, compared to the state-of-
the-art NVMe-based KV-SSD without employing BandSlim.
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