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Abstract: We identified a fairness problem in a network-based key-value storage system using Intel
Storage Performance Development Kit (SPDK) in a multitenant environment. In such an environment,
each tenant’s I/O service rate is not fairly guaranteed compared to that of other tenants. To address
the fairness problem, we propose OctoFAS, a two-level fair scheduler designed to improve overall
throughput and fairness among tenants. The two-level scheduler of OctoFAS consists of (i) inter-core
scheduling and (ii) intra-core scheduling. Through inter-core scheduling, OctoFAS addresses the
load imbalance problem that is inherent in SPDK on the storage server by dynamically migrating
I/O requests from overloaded cores to underloaded cores, thereby increasing overall throughput.
Intra-core scheduling prioritizes handling requests from starving tenants over well-fed tenants within
core-specific event queues to ensure fair I/O services among multiple tenants. OctoFAS is deployed
on a Linux cluster with SPDK. Through extensive evaluations, we found that OctoFAS ensures that
the total system throughput remains high and balanced, while enhancing fairness by approximately
10% compared to the baseline, when both scheduling levels operate in a hybrid fashion.

Keywords: high-performance I/O; key-value store; storage system; I/O scheduling

1. Introduction

Embedded key-value storage (KVS) systems like LevelDB [1] and RocksDB [2] have
gained widespread use as storage solutions for data-intensive applications. Traditionally,
these stores run on top of file systems, which involves the conversion of <key, value>
pairs into file and then into block addresses, incurring a significant performance overhead
during I/O operations [3]. Additionally, running a KVS on top of a file system introduces
additional overhead in the form of operating system operations, such as user-kernel mode
switching, interrupt handling, and context switching. With the advent of ultra-low-latency
storage devices like NVMe SSDs [4–6], these overheads have become worse [7].

To address this issue, various methodologies have been introduced to eliminate the file
system and operating system components in the I/O path of KVS [8–12]. One prominent
approach is the Intel Storage Performance Development Kit (SPDK) [13]. The SPDK utilizes
a user-level NVMe driver with polled mode, which plays a significant role in reducing the
performance overhead traditionally associated with file and operating systems. It reduces
context switching between user and kernel modes, repetitive block address translation, and
eliminates costly interrupts. Due to these characteristics, the SPDK can fully leverage the
true capabilities of NVMe SSDs. Consequently, there are ongoing efforts to integrate the
SPDK into the development of high-performance KVS solutions [14–16].
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On the other hand, in contemporary computing environments, the trend of storage
disaggregation is on the rise [17–20]. Storage disaggregation, achieved through storage
virtualization, allows remote disks or file systems to be presented as if they were local.
This method is commonly employed in cloud services like Amazon’s EBS and EFS, which
provide block and file storage capabilities, respectively. In such disaggregated storage
scenarios, the conventional methodology of developing embedded KVSs still requires
address translation at both the file and block storage layers. This process involves additional
overhead due to context switching within the kernel.

To address this issue, a network-connected disaggregated key-value storage system
called OctoKV [21] has been recently introduced. In OctoKV, the client directly transmits
key-value requests to the server, bypassing the file system or KVS. OctoKV then implements
the key-value storage engine on the user-level NVMe driver on the server using Intel
SPDK and exports it to the client over the network. This approach allows OctoKV to
bypass all the block and file components that contribute to the aforementioned overhead
on both the client and server sides, thereby leading to a substantial improvement in
performance. Furthermore, OctoKV leverages SPDK’s support for NVMe over Fabrics
(NVMe-oF), enabling the development of disaggregated storage architectures that offer
improved performance and scalability.

However, despite its current design, we have identified a key limitation in OctoKV: the
lack of support for multiple tenancy, an essential feature in cloud shared-storage environ-
ments. In such environments, where multiple tenants share resources, each tenant expects
to receive fair I/O service, but OctoKV does not guarantee fair I/O bandwidth allocation to
each tenant. Within OctoKV’s SPDK framework, each core sequentially processes the TCP
socket queue and the event queue. Key-value I/O requests from tenants are first placed into
the socket queue. These requests are then converted into various events and fed into the
event queue, where they are processed in the order they were received. If I/O requests from
more than two tenants are concurrently inserted into the sequence of these queues, but
with varying intensities, interference can occur in the I/O service between them, potentially
leading to unfairness in the I/O service experienced by each tenant.

In this paper, we introduce OctoFAS as a solution to address this multi-tenancy
problem in OctoKV. OctoFAS is an SPDK-based KVS equipped with a two-level fair
scheduler featuring inter-core and intra-core scheduling to enhance the overall system
performance and fairness simultaneously.

• Firstly, the inter-core scheduling dynamically manages the allocation of I/O requests from
aggressive tenants. It performs runtime migrations of these requests from overloaded
cores to underloaded cores, ensuring an even distribution of CPU utilization across
multiple cores while also considering fairness as a critical factor.

• Secondly, OctoFAS incorporates intra-core scheduling, which gives a higher priority to
I/O requests from starving tenants over those from well-fed tenants within the per-core
event queue,to deliver a fair key-value I/O service to multiple tenants.

Importantly, these two policies can be dynamically enabled or disabled based on
runtime analysis of each tenant’s latency and each core’s CPU utilization, allowing OctoFAS
to respond effectively to various workloads.

We implemented OctoFAS based on SPDK v21.10 and conducted an evaluation us-
ing the RocksDB db_bench benchmark. Our experimental results indicate that OctoFAS
maintains a high and balanced total system throughput. Moreover, it improves fairness
by 10% compared to the baseline when both inter-core and intra-core scheduling levels
function in a hybrid manner.

2. Background

In this section, we describe the effectiveness of the user-level NVMe driver (Section 2.1)
and SPDK-based server-side key-value storage system (Section 2.2).
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2.1. Event-Driven User-Level NVMe Drivers

The Intel Storage Performance Development Kit (SPDK) [13] is one of the most popular
storage frameworks for constructing high-performance storage systems, particularly with
ultra-low-latency NVMe SSDs [4–6]. To achieve low latency and high throughput, SPDK
provides a user-mode NVMe driver with a polled mode. This driver plays a crucial role
in minimizing additional latency in the I/O response time of fast SSDs. This extra latency
occurs when the SSD’s own latency is shorter than the time required for interrupt handling
and completion retrieval by the operating system. Furthermore, SPDK utilizes a per-core
lockless event framework. This framework effectively mitigates potential lock contention
issues that may arise from shared memory among CPU cores, resulting in optimal per-
formance. Consequently, client I/O requests are intricately bound to a single core. Each
request is seamlessly divided into multiple events, which are meticulously processed in a
sequential manner by the designated core. This approach allows SPDK to fully leverage the
performance potential of modern NVMe SSDs while maintaining low latency.

In SPDK, block device (BDEV) plays a fundamental role as a core component of the
SPDK block device layer. Every event within the system must be processed through the
BDEV. BDEV offers a pluggable module API that allows for the implementation of block
devices that interface with block storage devices. Users have the flexibility to choose from
existing BDEV modules or create virtual BDEV (VBDEV) modules. VBDEV modules enable
the creation of block devices on top of existing BDEVs. These BDEV operations collectively
handle comprehensive I/O requests. Using the VBDEV, SPDK can generate events for other
BDEVs. Users have the freedom to customize VBDEV as a user-defined function and insert
it within the I/O path to perform specific operations such as compression or encryption
during I/O processing. In SPDK, each core operates a dedicated thread known as a reactor,
which sequentially processes multiple pollers (functions).

2.2. SPDK-Based Server-Side Key-Value Storage System

NVMe over Fabrics (NVMe-oF) is a communication protocol designed to connect
host systems to storage resources across a network fabric by utilizing the NVMe protocol
as its foundation. NVMe-oF facilitates the transfer of data between a host system and
a target storage device through the use of NVMe commands. The data associated with
each NVMe command are transmitted over networks such as Ethernet, Fibre Channel
(FC), or InfiniBand. Importantly, NVMe-oF enables users to interact with remote NVMe
SSDs as if they are local storage devices, thus allowing for a fundamental form of storage
disaggregation. SPDK extends support for NVMe-oF. It offers compatibility with both
RDMA and TCP transports, providing NVMe-oF hosts tailored for client-side NVMe
drivers and targets for the server side. In a typical KVS scenario, the KVS runs on a file
system that can be either locally hosted or network-attached block storage. On the server
side, SPDK runs an NVMe-oF target BDEV along with an NVMe driver BDEV to effectively
manage incoming I/O requests from clients. The NVMe-oF target BDEV receives these
client-initiated NVMe commands through designated socket queues, while the NVMe
driver BDEV is responsible for generating block-level I/O operations and delivering them
to the SSD for execution.

Figure 1 illustrates the software design of the server-side SPDK-based key-value stor-
age system, OctoKV, and the event handling process within SPDK. OctoKV leverages
SPDK’s robust capabilities to support disaggregated storage architectures, effectively elimi-
nating the kernel overhead associated with operating on top of the operating system and
eliminating the file system overhead related to multiple address conversions. Specifically,
Figure 1a depicts OctoKV’s software stack. In OctoKV, the key-value storage engine oper-
ates within the SPDK framework on the server, streamlining the I/O stack on the client side
by entirely bypassing the file system. OctoKV maintains the same key-value API as before,
allowing applications running on the client side to access the key-value storage without
requiring any modifications. Additionally, OctoKV provides a key-value API library with
operations such as Put() and Get(), which are built on the NVMe protocol. On the server
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side, SPDK manages the NVMe-oF target BDEV, key-value store (engine) BDEV, and NVMe
driver BDEV to handle I/O requests from clients. The NVMe-oF target BDEV receives
the client’s NVMe commands through socket queues. The key-value store (engine) BDEV
implements data structures like LSM-trees and Hash to manage key-value pairs efficiently.
Meanwhile, the NVMe driver BDEV generates block-level I/O operations and delivers
them to the SSD for execution.
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Figure 1. SPDK-based server-side key-value storage system [21]. (a) Software stack; (b) SPDK’s event
handling procedure.

Figure 1b demonstrates how the server-side SPDK processes I/O requests received
from the client. The reactor, bound to the SPDK core, employs two pollers (functions) in a
round-robin fashion to poll the queues essential for I/O processing. Specifically, the reactor
executes Poller1 (P1) to poll the socket queue where NVMe commands are stored. It then
proceeds to Poller2 (P2) to poll the completion queue where completed I/O operations from
the SSD are recorded. The following describes the procedure through which the reactor
leverages these pollers to manage the client’s key-value I/O requests (write).

1 The client initiates an I/O request to the server using Put(k, v). The client’s NVMe
driver then sends the NVMe command (Put) to the server’s NVMe-oF target using the
NVMe-oF protocol. 2 After transmission, the NVMe command sent by the client is stored
in the socket queue of the NVMe-oF target. Subsequently, SPDK’s reactor executes the
pollers in sequential order. 3 The reactor executes poller (P1). Firstly, P1 first checks the
socket queue, and, if it is not empty, P1 proceeds to dequeue an item from the queue. The
item represents the NVMe command that was initially transmitted by the client. P1 then
transforms this dequeued item into an SPDK event. Secondly, P1 sequentially executes
the NVMe-oF target BDEV, key-value store (V)BDEV, and NVMe driver BDEV for the
NVMe command. The NVMe-oF target BDEV converts the NVMe command received
from the client into the SPDK’s I/O format (bdev_io). After that, the key-value store BDEV
takes the bdev_io as input and searches for the location (LBAs) of the value for the key. If
the key-value store BDEV is based on a hash data structure, it executes a hash function
for the key to find the location of the value. Then, the NVMe driver BDEV converts the
bdev_io into block I/O and enqueues it into the submission queue. 4 The reactor then
executes the next poller (P2). P2 checks the completion queue of the NVMe driver to see if
there are any completed I/O operations from the SSD. If there are completed operations, it
dequeues and processes them. If the queue is empty, the reactor returns to executing P1 ( 3 ).
Otherwise, P2 notifies the NVMe driver BDEV, key-value store (V)BDEV, and NVMe-oF
target BDEV through callbacks, indicating that the I/O operations have been successfully
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completed. 5 The reactor continues to repeat the above steps ( 2 and 3 ) to process the
events accumulated in each queue.

Notably, OctoKV identifies the load imbalance problem within SPDK-based KVS. As
depicted in Figure 2a, SPDK-based KVS exhibits an imbalance in workload distribution
among TCP connections when clients send NVMe commands over TCP to the server. De-
spite clients establishing multiple TCP connections and the server running corresponding
SPDK threads to process these commands, the distribution of workloads among connections
remains uneven. This imbalance results in certain connections receiving a disproportion-
ately heavier workload, incurring delays in I/O response times. Moreover, running the
key-value storage engine on the server contributes to an increase in CPU load, which
further intensifies the load imbalance issue. Particularly, Hash- or LSM-tree-based key-
value storage engines introduce CPU-intensive tasks, such as executing hash functions and
merge–sorts during compaction. This added CPU burden contributes to delays in response
times, with the TCP layer remaining unaware of these application processes. Consequently,
threads on connections experiencing high load significantly impact the overall response
time. OctoKV effectively addresses these load imbalance problems by implementing an I/O
event migration scheme that evenly distributes the I/O load across SPDK cores, thereby
achieving load-aware fine-grained scheduling (see Figure 2b). OctoKV monitors the current
core load distribution status and initiates online migrations when load imbalances are
detected. These migrations transfer the load from high- to low-load core groups, resulting
in a more balanced distribution of core loads across the server. Ultimately, this approach
maximizes the throughput of the entire key-value storage system. The details regarding the
migration scheme are further explained in Section 4.4.
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Figure 2. Visualizations of (a) load imbalance problem (red box) in SPDK-based KVS and (b) load-
aware balanced I/O scheduling (blue box) to address the problem.

3. Motivation

Although the state-of-the-art SPDK-based KVS is optimized for throughput by load
balancing, we confirmed that it does not guarantee fair I/O bandwidth allocation to each
tenant (Section 3.2), which is a crucial aspect in cloud environments (Section 3.1). Moreover,
we identified that the load imbalance not only affects the system performance but also the
fairness (Section 3.3).

3.1. Fairness of I/O Services

In a system where multiple clients/tenants share storage, fairness is achieved when
all clients receive an equal share of bandwidth, typically set at 1/N [22–34]. In other words,
if the I/O operations of multiple clients are processed simultaneously and each client
experiences an equal reduction in performance, the system is considered fair.

In our system, let us consider that one tenant corresponds to one I/O flow. For each
I/O flow, denoted as f lowi, when it runs in isolation, its average response time is RTi

Alone.
When f lowi runs in parallel with other tenants, its average response time is RTi

Shared. Here,
the response time of each I/O request is defined as the time it takes for the request to be
initiated by the client and receive a response from the server. In this context, the slowdown
of f lowi (Si) is defined as follows:
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Slowdown (Si) =
RTi

Shared

RTi
Alone (1)

Furthermore, in this scenario, the fairness of the system (F) is defined by measuring
the ratio between the maximum and minimum slowdown observed across all flows in
the system.

Fairness (F) =
min

i
{Si}

max
i

{Si}
(2)

A smaller value of F indicates a greater difference between the flow that experiences
the most significant slowdown and the flow with the least slowdown, signifying an unfair
system. Conversely, a value of F closer to one signifies a fair system.

3.2. Experimental Analysis

To confirm that SPDK-based KVS does not provide or guarantee fairness to multiple
clients/tenants in a multi-tenant environment, we conducted the following experiment; In
the system, two different tenants ( f low1 and f low2) with varying I/O workloads shared
OctoKV for write operations. f low1 employed two I/O threads to perform write operations,
while f low2 initiated write operations with a variable number of threads, ranging from
a minimum of 2 to a maximum of 14, in increments of 2. This allowed for an increase
in the I/O workload for f low2. Details regarding the I/O load for each tenant and the
experimental environment are described in Section 5.

Figure 3 shows the experimental results, showing the throughput and slowdown of
each flow. In Figure 3a, as the I/O workload of f low2 increases, the slowdown of f low1
gradually increases from 1 to 2, while its normalized throughput decreases to 0.55. This
occurs because f low2 requests a significant amount of I/O, which interferes with the
execution of f low1, leading to increased latency for f low1. Conversely, the performance of
f low2 in Figure 3b demonstrates that the slowdown values remain almost unchanged, and
throughput values are continuously increasing.
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Figure 3. Slowdown and normalized throughput of each I/O flow, f low1 and f low2, when they
concurrently use SPDK-based KVS, and the resulting fairness.

In accordance with the slowdown values of the two I/O flows, fairness is also depicted
using Equation (2). As shown in Figure 3c, when both I/O flows have a thread count of 2,
the fairness value is mostly equal to 1, which is the expected level of fairness. However,
as the thread count of f low2 increases, the fairness values sharply decrease. This experi-
ment highlights that SPDK-based KVS encounters an unfairness problem when multiple
tenants send varying amounts of requests concurrently. Considering the ultimate goal of
SPDK-based KVS in a cloud environment with multiple tenants, it is essential to address
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the fairness issue. Without ensuring fairness, even if overall latency and throughput are
excellent, it can pose significant problems.

3.3. Correlation between Load Imbalance and Fairness

We discovered that there is a correlation between the unfairness among clients and the
I/O request processing capacity per SPDK core. SPDK establishes TCP channels between
clients and the server using NVMe-oF, and the number of TCP connections is equal to
the number of SPDK cores on the server. Each client’s transport layer sends I/O requests
to the server via TCP connections. When doing so, it sends a certain amount of requests
that do not exceed a threshold on the first TCP connection and then sends the remaining
requests on subsequent TCP connections. Consequently, the amount of I/O requested per
TCP connection may vary, leading to different numbers of NVMe commands accumulating
in the server’s socket queue for each core. Furthermore, the NVMe commands in the socket
queue may consist of requests from various tenants.

In Figure 4, to conduct a close examination, we analyzed the correlation between
I/O latency and CPU core utilization on the server side of SPDK-based KVS. It depicts
the results of I/O latency in SPDK concerning server core utilization. The baseline SPDK-
based KVS utilizes six CPU cores. To gain a clear understanding of the fairness issue, we
conducted experiments for the scenario where fairness falls below 0.8. Specifically, we used
2 threads for f low1 and 10 threads for f low2. Note that the I/O latency mentioned here
is not the response time from the client’s perspective but rather a value measured on the
server side.
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(c,d) Results of simultaneously running f low1 and f low2.
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Figure 4a,b represent the results when f low1 and f low2 are processed individually.
In Figure 4a, the server utilizes only two out of the six cores for I/O processing. On the
other hand, when f low2 with higher I/O demands than f low1 is processed, as observed in
Figure 4b, all six cores are engaged in processing f low2. At this point, cores#1 and#2 exhibit
a core utilization of 0.6 or higher, while the utilization of the remaining cores is 0.4 or lower,
resulting in a bimodal distribution of core utilization. As the I/O volume increases, there is
a noticeable load imbalance among the cores, and high-core-utilization cores experience
longer latencies. On the other hand, Figure 4c,d present the results for f low1 and f low2
when executed simultaneously. Figure 4c demonstrates a significant increase in latency for
f low1 when executed concurrently. In particular, f low1 is processed on overloaded core#1
and core#2 due to the presence of f low2, resulting in a substantial increase in I/O latency.
Similarly, in Figure 4d, the increased I/O from f low2 leads to load imbalance, causing an
increase in I/O latency. However, the magnitude of the latency increase is relatively smaller
compared to the increase in f low1.

In summary, the load imbalance situation induced by f low2 has a detrimental impact
on fairness. When load imbalance occurs due to f low2, f low1 is processed on cores with
high utilization, leading to a significant increase in latency. Thus, load imbalance not only
affects throughput but also has a negative impact on fairness. We propose OctoFAS as a
solution to address the challenges involving a mix of fairness and load imbalance.

4. Design and Implementation

In this section, we explain the components of OctoFAS. We describe the overall sys-
tem structure (Section 4.1), a monitoring module that monitors fairness and core uti-
lization at fixed time intervals (Section 4.2), a scheduling module equipped with a two-
level fair scheduler (Section 4.3), and implementation details including operational flows
(Section 4.4).

4.1. System Overview

As confirmed in Section 3, SPDK-based KVS fails to ensure fairness among I/O
flows. Additionally, the load imbalance problem originating from SPDK not only reduces
throughput but also has a negative impact on fairness among I/O flows. To address this
combination of issues, we present OctoFAS, an innovative SPDK-based network key-
value storage system with a two-level I/O event scheduling technique. The goal was to
enhance overall server throughput through improved load balancing and ensure fairness
by changing the order of I/O processing.

Figure 5a provides an overview of the OctoFAS system architecture. OctoFAS con-
sists of the OctoFAS Monitoring Module (OFMM) and the OctoFAS Scheduling Module
(OFSM). OctoFAS was designed to adapt to dynamically changing workloads based on
the integrated operation of OFMM and OFSM. OFMM monitors for unfairness and load
imbalance issues among I/O flows at fixed time intervals. OFSM, in turn, makes scheduling
decisions based on the information collected by OFMM and employs a robust scheduling
algorithm. Figure 5b illustrates the high-level operation of the two-level fair scheduler
proposed in OctoFAS. The scheduling in the two-level fair scheduler is divided into inter-
core scheduling and intra-core scheduling. Inter-core scheduling, similar to the load-aware
balanced I/O scheduling proposed in traditional SPDK-based KVS [21], aims to increase
throughput but with different migration targets. Intra-core scheduling operates within
each core’s event queue and enhances fairness. These two scheduling mechanisms can be
independently turned on or off and can operate concurrently in a hybrid fashion. Further
details are discussed in the following paragraphs.
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Figure 5. System overview of OctoFAS featuring a two-level fair scheduler.

4.2. OctoFAS Monitoring Module (OFMM)

OFMM monitors the slowdown values of each I/O flow and the core utilization of each
core within a fixed time interval (W). This fixed time interval is an adjustable parameter,
allowing flexibility in the monitoring process.

4.2.1. Fairness Monitoring

As seen in Equations (1) and (2), the slowdown and fairness, respectively, of each flow
are calculated based on the average I/O latency of each I/O flow. The average I/O latency
of each I/O flow is denoted as flatency( f lowi), where f lowi ranges from f low1 to f lowt. A
f low represents a group consisting of t flows, denoted as f low1, f low2, and so on. However,
it is challenging to track the actual I/O latency experienced by remote clients within the
SPDK running on the server. Therefore, OctoFAS estimates the actual I/O latency based on
the measured I/O latency within SPDK. OctoFAS corrects the values using the difference
between the I/O latency measured within SPDK and the I/O latency measured by clients.
The client I/O latency, denoted as RTi, is composed of the network round-trip time TNet and
flatency( f lowi), which can be expressed as RTi = TNet + flatency( f lowi). When TNet occupies
a large portion of RTi, the fairness calculated using flatency( f lowi) is significantly reduced.
Hence, we added the measured TNet to flatency( f lowi) to calculate the fairness. Once the
calculated fairness based on the measured slowdown values is 0.9 or lower, OFMM sets the
unfairness flag. Through this process, OFMM determines the occurrence of unfairness.

4.2.2. Core Utilization Monitoring

OFMM periodically collects core utilization information for each core using the APIs
provided by SPDK. Core utilization is denoted as fcutil(ci), where ci ranges from c1 to cn.
Here, C represents a core group consisting of n cores, denoted as c1, c2, and so on. OFMM
checks whether load imbalance exists among the cores by examining the measured core
utilizations and using the following equation:

LoadBalance (LB) =
min

i
{ fcutil(ci)}

max
i

{ fcutil(ci)}
(3)

The equation provided calculates the load imbalance by measuring the ratio between
the maximum and minimum core-utilization values of all cores. This logic is similar to
the one used for calculating fairness. Balanced load can be seen as a scenario where the
core utilization is evenly distributed, and OFMM compares this load imbalance value (LB)
with a predefined threshold, denoted as TLB, which ranges from 0.0 to 1.0. The user sets
TLB, and it should be configured to match the specific system environment. If LB is lower
than TLB, OFMM sets the load imbalance flag. Subsequently, OFMM divides the cores into
two groups based on their utilization: one group with high core utilization and another
with low core utilization. The average utilization of all cores, denoted as Uavg, is used as
the criterion to differentiate between these two groups. OFMM passes these flag values and
information about the two groups and Uavg to OFSM, enabling it to trigger the appropriate
scheduling to tackle the load imbalance and improve system performance and fairness.
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4.3. OctoFAS Scheduling Module (OFSM)

As described earlier, OFMM evaluates fairness values and load imbalance for each time
interval (W) to select the appropriate scheduling policy among the three available. OFSM,
as depicted in Algorithm 1, classifies four cases based on the truth table for the two flags
received from OFMM and determines the scheduling policy it will perform. For these cases,
excluding (F, F), OFSM provides three algorithms as outlined below (see Algorithm 1).

Algorithm 1 OctoFAS Scheduler Module (OFSM).
1: /* OctoFAS Scheduler Module */
2: while EventQ is not empty do
3: Ehead ← Event retrieved from the head of EventQ
4: if un f airness is F and loadImbalance is F then
5: FORWARDTOKVS(Ehead)
6: else if un f airness is F and loadImbalance is T then
7: INTERSCHEDULE(Core, Ehead)
8: else if un f airness is T and loadImbalance is F then
9: INTRASCHEDULE(Flow, Core, Ehead)

10: else if un f airness is T and loadImbalance is T then
11: HYBRIDSCHEDULE(Flow, Core, Ehead)

4.3.1. Inter-Core Scheduling

Inter-core scheduling aims to address the load imbalance problem by migrating events
from overloaded cores to underloaded cores, thus achieving a fair queue depth across
all cores’ event queues. This algorithm operates similarly to the load-aware balanced
scheduling used in the previous SPDK-based KVS [21]. It leverages the message passing
functionality provided by SPDK, and further details can be found in Section 4.4.2. The goal
is to equalize the load on each core, ultimately increasing the overall server throughput.

In this situation, determining the number of I/O events to be migrated from the
high- to the low-util group CPUs is a critical decision since moving too many I/O events
could overload the cores in the low group. There are various approaches to making this
decision, but the simplest and most reliable method is to migrate I/O events one by
one in a round-robin order from each core in the high-utilization group to the cores in
the low-utilization group sequentially. However, when the core utilization of the current
target low-utilization-core approaches Uavg due to migration, that low-utilization core is
temporarily excluded from migration. Similarly, when a high-utilization core’s utilization
approaches Uavg due to migration, migration is paused on that core. This straightforward
approach helps balance the core loads and prevents situations where the overloaded core
that is performing migrations becomes underloaded, while the core receiving migrations
becomes overloaded. This can be clearly confirmed in Algorithm 2.

Algorithm 2 OFSM inter-core scheduling.

1: function INTERSCHEDULE(Core, Ehead)
2: Coretemp ← an arbitrary core of Clow (starting point)
3: if Core ∈ Chigh and COREUTIL(Core) ≥ Uavg then
4: while COREUTIL(Coretemp) ≥ Uavg do
5: Coretemp ← the next core in Clow

6: PUSHTOMSGQ(Coretemp, Ehead, Flow)
7: Coretemp ← the next core in Clow
8: return T
9: else

10: return F
11:
12: /* Message queue poller for inter-core scheduling */
13: while MsgQ is not empty do
14: Ehead ← Event retrieved from the head of MsgQ
15: FORWARDTOKVS(Ehead)
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Load balancing in OctoFAS differs from the load-aware scheduling of the former
SPDK-based KVS in that it offers flexibility in deciding which flows of events, among
those on overloaded cores, to migrate to other underloaded cores. In the SPDK-based
KVS, all events on overloaded cores were migrated without considering the intensity
of the requesting flows. This was because it was the most straightforward way to max-
imize overall throughput. However, OctoFAS provides system administrators with the
freedom to choose which flow to migrate based on the intensity of each flow calculated
during the fairness monitoring. This allows for the consideration of system-wide fair-
ness. For example, if it is determined that migrating events from only the flows per-
ceived as dense during an in-house evaluation in the target system can maintain high
throughput and increase fairness, such a configuration is possible. In overloaded cores,
there may be situations where it is deemed beneficial to remove events from dense
flows to benefit sparse flows. We divided the decision on which flow’s events to mi-
grate into three cases and conducted detailed experiment. The results can be found in
Section 5.2.1.

4.3.2. Intra-Core Scheduling

This algorithm is triggered when unfairness issues occur without the load imbalance
in core utilization. It intentionally delays the processing order of events from dense flows
within the queue through backwarding, which means fetching the request at the front of the
queue and re-inserting it at the back, ensuring that events from sparse flows are processed
first. The number of backwarding iterations is crucial and is determined according to the
following formula:

Isparse_avg =
∑n

i=1 fintensity( f lowi
low)

n
(4)

Backwardings(B) =
fintensity( f lowi

high)

Isparse_avg
α (5)

In OFMM, the average intensity of low-intensity flows identified as sparse flows
is calculated. Intensity per flow, denoted as fintensity, is easily determined in OFSM by
measuring the requests per second. The number of backwarding iterations is calculated
by multiplying α with the result of dividing the intensity of flows in the dense flow group
by the average intensity value of sparse flows. α is a tunable constant specific to the
system environment. α should be set as a value that maximizes fairness while maintaining
throughput at an acceptable level, as determined through in-house exploratory runs.

Once again, we conducted detailed case experiments on this, and the results can be
found in Section 5.2.2. Once the number of backwarding iterations is determined, that
number of backwarding iterations is applied to the events from dense flows in each event
queue, rotating them idly to ensure that events from sparse flows are processed with
high priority. In the memory space allocated to OFSM, an array with an entry for each
connected tenant of OctoFAS is created. Each entry is used to record the backwarding
setting value for the corresponding flow. Subsequently, for each core’s message queue,
a dynamic tracking variable is assigned to each event currently inserted in the queue to
record how many times the event has been moved in and out within the queue. Com-
paring the number of rotations performed with the number of rotations needed ensures
that the intentional delay occurs correctly. Detailed operations for this can be found in
Algorithm 3.
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Algorithm 3 OFSM intra-core scheduling.

1: function INTRASCHEDULE(Flow, Core, Ehead)
2: if Flow ∈ Flow then
3: FORWARDTOKVS(Ehead)
4: else
5: PUSHTOMSGQ(Core, Ehead, Flow)
6:
7: /* Message queue poller for intra-core scheduling */
8: while MsgQ is not empty do
9: Ehead ← Event retrieved from the head of MsgQ

10: if Rotated[Ehead] < RotateNum[Flow] then
11: PUSHTOMSGQ(Core, Ehead, Flow)
12: Rotated[Ehead] = Rotated[Ehead] + 1
13: else
14: FORWARDTOKVS(Ehead)

Intra-core scheduling intentionally delays the processing order of dense flows to give
a relative advantage to sparse flows. However, it is important to note that delaying dense
flows incurs a certain amount of round-robin overhead. As a result, while overall system
fairness increases, the overall throughput may decrease. Therefore, as mentioned earlier,
the number of backwarding iterations should be thoughtfully configured.

4.3.3. Hybrid Scheduling

Hybrid scheduling is applied when both load imbalance of core utilization and un-
fairness issues arise simultaneously. In such cases, the two algorithms mentioned above
operate in a two-level manner. First, through inter-core scheduling, I/O events are migrated
from cores with high loads to cores with lower loads. Simultaneously, within each core’s
event queue, intra-core scheduling is applied, rearranging the order of I/O requests for
dense flows to prioritize sparse flows (see Algorithm 4). Note that the message queue
poller function is used in intra-core scheduling. For proper determination of the number of
backwarding iterations during the intra-core scheduling, OFSM checks the flow of requests
migrated to the core’s queue and updates (adds) the count of requests for that flow.

Algorithm 4 OFSM hybrid scheduling.

1: function HYBRIDSCHEDULE(Flow, Core, Ehead)
2: if Flow ∈ Flow then
3: FORWARDTOKVS(Ehead)
4: else if INTERSCHEDULE(Core, Ehead) is F then
5: PUSHTOMSGQ(Core, Ehead, Flow) /* Msg queue poller of intra-core scheduling */

4.4. Implementation
4.4.1. Hash-Based Key-Value Storage Engine

We implemented a KVS engine with SPDK’s VBDEV module by adopting a hash-based
data structure to prevent the excessive performance variations associated with LSM-tree
compaction, allowing for a clearer observation of the scheduling impact.

4.4.2. Message Passing Based Two-Level Fair Scheduler

We focused on SPDK’s message passing infrastructure [35] to achieve I/O reordering
(scheduling). SPDK employs a message passing approach instead of a traditional locking
method, enabling concurrency in multi-threaded programming and ensuring linear scala-
bility with the addition of storage devices. Each reactor thread has its message queue, which
facilitates communication between multiple reactors by exchanging events as messages in
each other’s message queues. As part of this mechanism, the reactor checks its message
queue for pending messages between the execution of two pollers, P1 and P2 (refer to
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Section 2.2). We utilized this feature of SPDK to implement the proposed two-level fair
scheduling algorithms.

Instead, we made slight adjustments to the message queue poller routine of each
reactor to execute the key-value storage engine VBDEV for migrated events, thus enabling
the utilization of per-core message queues as channels for event migrations, as outlined
in Algorithms 2 and 3. Subsequently, the reactor with high utilization pushes events to
the message queue of the target low-utilization cores, taking into account the calculated
number of event migrations (see Figures 5b and 6).
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Figure 6. Operational flow when the hybrid scheduling is turned on by OctoFAS scheduling module.

4.4.3. Operational Flow

Figure 6 depicts the behavior of OFMM and OFSM using SPDK’s BDEVs when an
SPDK-based KVS runs on storage nodes. To provide a detailed understanding of the
system’s operation flow, let us consider a scenario where each I/O request enters the
socket queue. Reactor 1 represents the thread of a core in the high group, while Reactor 2
corresponds to a core in the low group. I/O request events from dense intensity flows are
denoted as H, and events from sparse intensity flows are denoted as L. OFMM monitors
both unfairness and load imbalances, and, when it detects these issues, it reports them to
OFSM and OFSM starts scheduling (hybrid scheduling is applied in this example). Note
that the jth poller of each ith reactor is labeled as Ri_Pj.

1 R1_P1 processes I/O requests from H that is in the socket queue. After executing the
NVMe-oF target BDEV operation for this event, the I/O request is designated for inter-core
scheduling in the OFSM BDEV and sent to Reactor2’s message queue. Following this,
R1 checks for KVS BDEV events, but since there are none, it proceeds directly to check
R1_P2. However, the message queue is also empty, so it is skipped. R1 then proceeds to
execute R1_P3, but as the completion queue is also empty, it returns to running R1_P1.
2 Meanwhile, at this point, Reactor2 executes R2_P1, which handles the I/O from L in
the socket queue. Since it is from L, this I/O is directly passed through the NVMe-oF
Target BDEV, I/O scheduler BDEV, KV BDEV, and NVMe driver BDEV and delivered
to the SSD. 3 Next, Reactor2 proceeds to execute R2_P2. Here, it checks the message
queue and examines the H event previously migrated from R2_P1. Since it is from H, intra-
core scheduling is performed as described in more detail below. Reactor2 then proceeds
to executing R2_P3. 4 Let us return to Reactor1. R1_P1 handles the I/O from L in the
socket queue. Since i i’s also from L, this I/O is processed directly as seen in Step 2.
5 Subsequently, R1_P1 is executed again, and the I/O request retrieved from the socket
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queue is for H. Inter-core scheduling is initially attempted for the I/O, but, at this point,
after migration, Core1’s core utilization is lower than U_avg, and Core2’s core utilization
is higher than U_avg, so it is not selected as an inter-core scheduling I/O but placed in
Reactor1’s message queue. 6 R1_P2 checks that the I/O from H in the message queue is
an intra-core scheduling target I/O and dequeues and enqueues it in the message queue
again. Since KVS and NVMe driver processing are not performed for this I/O, R1_P3 is
executed immediately. 7 Returning to R1_P1, since the socket queue is empty, it proceeds
directly to R1_P2, where it encounters H’s I/O in the message queue once more. It confirms
that the execution has been postponed once and performs another round of backwarding
(assuming backwarding count is two).

5. Evaluation

In this section, we first describe the experimental setup (Section 5.1). We then analyze
the performance of OctoFAS, including I/O latency, throughput, and fairness (Section 5.2).

5.1. Evaluation Setup

Testbed Setup: We implemented OctoFAS using SPDK v.21.10, with two servers con-
nected via a 10 Gbps Ethernet. The client communicated with the servers through NVMe-oF.
Both client and server had the same specifications as described in Table 1. The servers
configured with six CPU cores operated at a down-clocked speed of 1.80 GHz.

Table 1. Hardware/software specifications.

Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40 GHz

CPU (Client) 10 cores @ 2.40 GHz
(Storage) 6 cores @ 1.80 GHz (Down-clocking)

Memory 32 GB DDR4

Disk 500 GB Samsung 970 EVO SSD

Interface NVMe-oF (10 Gbps Ethernet)

Software Ubuntu 20.04, SPDK v.21.10, RocksDB v.6.23

Workloads: We used workloads provided by RocksDB db_bench benchmark [36].
Specifically, “Fill Random” and “Read Random” workloads were used for Put (write) and
Get (read), respectively. The key and value sizes were set to 4 B and 16 KB, respectively.
Since the KVS used in OctoFAS is based on a simple hash function, the effect of OctoFAS’s
fair scheduling is independent of the key pattern, key and value sizes, and workload type.
The db_bench initiates n threads to concurrently insert or retrieve key-value pairs from
OctoFAS. We then classified two clients (flows) based on the number of threads: f low1
(2 threads) and f low2 (8 threads). In each workload, every thread executes 300,000 insert or
retrieve operations synchronously. We measured the utilization of individual CPU cores,
I/O response time, I/O latency, and throughput. It is important to note that the server
measures I/O latency, while I/O response time is measured from the client’s perspective.

5.2. Performance and Fairness of Two-Level Fair Scheduling

We analyzed the I/O latency and throughput experienced by each flow, as well as
the overall server system throughput and fairness, when applying the detailed algorithms
of two-level fair scheduling proposed in OctoFAS. The algorithms include the inter-core
scheduling (Section 5.2.1), the intra-core scheduling (Section 5.2.2), and the hybrid schedul-
ing (Section 5.2.3).

5.2.1. Inter-Core Scheduling

The effectiveness of enhancing the overall system throughput and addressing load
imbalance issues in SPDK-based KVS through the inter-core scheduling has already been
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proved [21,37,38]. However, we recognize that simply transferring I/O requests from all
overloaded cores to underloaded cores without considering flow correlation may not be
optimal in terms of fairness. To determine what to transfer when performing inter-core
scheduling, we measured system throughput, which is defined as the sum of the throughput
for each flow, and fairness during the simultaneous execution of f low1 (sparse flow) and
f low2 (dense flow). Specifically, we defined cases where no flow is migrated (baseline),
only f low1 is migrated, only f low2 is migrated, and both f low1 and f low2 are migrated.

The results are shown in Figure 7a,b. When moving all f lowi to achieve a balanced
a load as possible, the overall system throughput increases the most (approximately 4%).
However, from a fairness perspective, it is optimal to move only the dense flow ( f low2),
and moving the sparse flow ( f low1) actually degrades fairness. This can be explained by the
mechanism of message passing in SPDK, which serves as the medium for load migration
in SPDK-based KVS. Through message passing, events migrated to the destination core are
processed only after handling all the events in the socket queue that the destination core
was processing at that moment. The destination core’s reactor thread checks the message
queue poller before it executes the P2 poller (see Figure 1). Consequently, when only the
requests from the intense (dense) flow are migrated, each execution of migrated events is
delayed compared to non-migrated events from sparse flow ( f low1). Simultaneously, the
non-migrated events from sparse flows on overloaded cores all benefit from the migrations
of contenders, resulting in an increase in fairness. On the other hand, when migrating
events from sparse flows, the processing of the migrated events is delayed due to the
aforementioned waiting time on the message queue. Consequently, events from intense
flows are processed first on both overloaded and underloaded cores, leading to performance
degradation for sparse flows and eventual fairness degradation.
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Figure 7. Comparison of the impact of inter-core scheduling on system throughput and fairness based
on the migration target. Inter(k) refers to inter-core scheduling that moves the requests of k, where k
represents either a sparse tenant or a dense tenant, and All denotes both types of tenants.

5.2.2. Intra-Core Scheduling

In intra-core scheduling, adjusting the delay in handling I/O events for dense flows
based on the number of backwarding instances is essential, and understanding its impact
on fairness is vital. Therefore, we varied the backwarding counts for the execution of I/O
events for dense flows on each core from 0 to 20, increasing by 5 each time. Similar to the
previous experiments, we measured the system throughput and fairness.

The results are shown in Figure 8a,b. As the number of backwarding instances in
intra-core scheduling increases, fairness improves (approximately 12% increase in case of
20 backwardings), but overall throughput decreases (approximately 19% decrease in case
of 20 backwardings). The throughput experiences significant drops starting from the case
with 10 backwardings. Note that when the backwarding count increases from zero to five
instances, due to the introduction of message passing processing which is the medium for
per-queue backwarding, the total throughput temporarily increases. Based on these results,
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we found that starting from 10 instances of backwarding, the intra-core scheduling visibly
increases fairness, and as the number of instances increases, fairness continues to grow.
However, in our environment, we observed that throughput drops without any further
increase in fairness starting from 15 instances of backwarding. Therefore, it is evident that
setting the number of backwarding instances carefully, considering the trade-off between
throughput and fairness in each environment, is necessary.
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Figure 8. Comparison of the impact of intra-core scheduling on system throughput and fairness based
on the number of backwardings. A backward value of 0 means a baseline that does not perform
intra-core scheduling.

5.2.3. Hybrid Scheduling

Figure 9 shows how the system throughput and fairness change when selecting each
scheduling algorithm. Note that both intra-core and hybrid scheduling adopted 20 instances
of backwarding, which significantly enhanced fairness and substantially reduced total
throughput, as depicted in Figure 8, to assess the best-case fairness and the worst-case
total throughput achievable during hybrid scheduling. In addition, for both inter-core and
hybrid scheduling, we adopted a migration policy that only migrates events from dense
flows. As detailed in Section 5.2.1, this policy stands out as the optimal approach in terms
of maximizing fairness while simultaneously boosting overall throughput.

baseline inter-core intra-core hybrid
Scheduling Algorithm

450

500

550

600

650

700

Th
ro

ug
hp

ut
 (M

B
/s

)

0.6

0.7

0.8

0.9

1.0

Fairness

fairness

Figure 9. Comparison of the impact of each scheduling algorithm on system throughput and fairness,
with migrations for dense flows (inter- and hybrid scheduling) and 20 backwardings performed
(intra- and hybrid scheduling).

The results indicate that the hybrid scheduling demonstrated a total system through-
put similar to that of the baseline system while achieving an overall improvement in fairness
of approximately 10%. When compared to intra-core scheduling, the improvement in fair-
ness against the baseline with hybrid scheduling was relatively small, but it significantly
boosted the overall system throughput, improving it approximately 25%. When compared
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to inter-core scheduling, hybrid scheduling sacrificed a bit of the overall throughput im-
provement but achieved an approximately 8% enhanced fairness. As described earlier, we
can fine-tune the performance and fairness values by adjusting the migration targets in
inter-core scheduling and the number of backwarding instances in intra-core scheduling. To
design an SPDK-based KVS that prioritizes both fairness and overall system performance,
it is evident that hybrid scheduling should be chosen.

6. Related Work

SPDK for High-Performance Storage Stack: Several studies have adopted SPDK for
building high-performance storage systems, including file systems, such as EvFS [15] and
FSP [39] and KVS such as SpanDB [14] and TridentKV [16]. However, the focus remained
on how to use SPDK, whereas the inherent impact of KVS operations on SPDK performance
has not been clearly studied. “Our work focuses on deploying key-value functionality onto
the architecture of SPDK-based network clouds and addressing the internal scheduling
challenges of SPDK when implementing a KVS within the SPDK framework”.

Load Balancing and Fairness Enhancement: Several strategies such as thread or data
migration have been explored to balance CPU loads with NUMA architectures [40–43].
These approaches primarily address differences in memory access times incurred by inter-
connects between processors, e.g., NThread [40] and AASH [42] proposed thread migration
as a means of avoiding contention in processor interconnects. There have been efforts
directed toward load balancing in storage systems [44–48]. FastResponse [45] proposed
several schemes applicable across the Linux storage stack to mitigate I/O interference
between co-running low-latency I/O services. The blk-switch [44] achieved low latency
and high bandwidth in the block storage layer by adopting a multi-queue design with load
balancing and scheduling techniques. OctoFAS mitigates I/O latency spikes by introducing
inter-core scheduling, addressing the inherent problems caused by per-core event loop
design in SPDK. On the other hand, research on fairness, much like load balancing, has
been extensively conducted in various fields, particularly in multi-tenant cloud environ-
ments [23–34]. However, there has been a lack of research on fairness within the context
of storage solutions structured through SPDK and SPDK-based network storage system.
OctoFAS presents a novel dynamic two-level scheduling algorithms that tackles both the
load imbalance and unfairness problem inherent in the SPDK-based network key-value
storage system.

7. Conclusions

In this study, OctoFAS, our proposed two-level fair scheduler, was found to effectively
address the fairness issue in multi-tenant environments using Intel SPDK for network-
based key-value storage systems. The two-level fair scheduler comprises inter-core and
intra-core scheduling. Through inter-core scheduling, OctoFAS effectively redistributes
I/O requests to balance the load across cores, thereby enhancing overall throughput.
Additionally, its intra-core scheduling prioritizes requests from less served tenants, ensuring
a more equitable distribution of I/O services. Deployed on a Linux cluster with Intel
SPDK, OctoFAS not only maintains high system throughput but also improves fairness
by 10% compared to the baseline when both scheduling levels operate in a hybrid manner.
The hybrid scheduling of OctoFAS demonstrates a significant advancement in achieving
both efficiency and fairness in multi-tenant storage systems.
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